Journal of Parallel and Distributed Computing 128 (2019) 71-83

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Understanding the latency distribution of cloud object storage N

Check for

systems
Yi Su, Dan Feng *, Yu Hua, Zhan Shi *

Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System, Ministry of Education of China, School of Computer Science
and Technology, Shenzhen Huazhong University of Science and Technology Research Institute, Huazhong University of Science and
Technology, Wuhan, 430074, China

HIGHLIGHTS

o We propose an analytic-based model that predicts the response latency distribution of cloud object storage systems.

e Our model considers caching, multiple data chunks, different types of disk operations, and queue discipline of the event-driven programming model.
o We provide the quantitative analysis of the waiting time for being accept()-ed.

o We provide the method for predicting the occurrence of timeouts.

ARTICLE INFO ABSTRACT

Article history: As a fundamental cloud service, the cloud object storage system stores and retrieves millions or even
Received 2 March 2018 billions of read-heavy data objects. Serving for a massive amount of requests each day makes the response
Accepted 11 January 2019 latency be a vital component of user experiences. Timeout is also a key issue as it has a great impact

Available online 18 February 2019 on the response latency. Due to the lack of suitable understanding on the distribution of the response

latency and the occurrence of timeouts, current practice is to use overprovision resources to meet a

gg{g?gjﬁce modeling Service Level Agreement (SLA) on response latency. Hence, firstly, we build a performance model for the
Cloud object storage cloud object storage system, which assumes no timeout occurring. Our model predicts the percentage of
Latency distribution requests meeting an SLA, in the context of complicated disk operations, event-driven programming model
Queueing theory and requests waiting for being accept()-ed. Secondly, we propose a method that determines whether
or not our model is applicable by predicting the occurrence of timeouts. We evaluate our model with a
production system using a real-world trace. In a variety of scenarios, our model reduces the prediction
errors by up to 90% compared with baseline models, and its overall average error is 2.63%. Moreover, we

could also accurately predict the applicability of our model.
© 2019 Elsevier Inc. All rights reserved.
1. Introduction generally stores and retrieves millions or even billions of diverse
data objects (also called blobs), including photos, audios, videos,
Cloud object storage systems, like Amazon S3 [1] and Open- documents, etc. Moreover, the cloud object storage system may

Stack Swift [22], play an important role in modern web-based also directly serves millions of latency sensitive Internet users.

applications. In addition to cloud object storage systems from In order to understand the relationship between the distri-
public cloud providers, industrials also build and maintain their bution of the response latency and the resource allocation, we
own object storage systems, e.g. Facebook uses Haystack [2] for develop an analyt1g—based perfgrmance model for the cloud object
storing photos, LinkedIn employs Ambry [21] for holding media storage system using event-driven programming model (e.g. one

. e . process handles multiple transactions in time-division multiplex-
objects,_and Wlklpedla has deployed Openstack SW.'.ft [36] clusters ing manner with an event loop using epoll/poll/select function).
as media object stores for efficiency and scalability. As one of

. ° The event-driven programming model has been widely adopted
the fundamental cloud services, the cloud object storage system py (joud object storage systems (detailed in Section 2). Different

from existing analytic-based models [4,11,14,31] that predict the
* Corresponding authors. average performance metrics (e.g. throughput, mean response la-

E-mail addresses: suyi@hust.edu.cn (Y. Su), dfeng@hust.edu.cn (D. Feng), tenQ.’)' our model predicts the percentage of requests meeting a
csyhua@hust.edu.cn (Y. Hua), zshi@hust.edu.cn (Z. Shi). requirement of response latency, e.g. 95% of the requests could

https://doi.org/10.1016/j.jpdc.2019.01.008
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.01.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.01.008&domain=pdf
mailto:suyi@hust.edu.cn
mailto:dfeng@hust.edu.cn
mailto:csyhua@hust.edu.cn
mailto:zshi@hust.edu.cn
https://doi.org/10.1016/j.jpdc.2019.01.008

72 Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83

be responded in at most 100 ms. The response latency percentile
is superior to the average metrics in the context of the cloud
object storage system for the following reasons. First, the response
latency is a key performance metric for cloud object storage sys-
tems due to having a great impact on user experiences, which are
closely related to revenues. Second, even 1% of traffic corresponds
to a significant volume of user requests for cloud object storage
systems [6].

Considered the large volume of data objects and the long tail
distribution of data accessing [2,12], cost-efficiency is one of the
main concerns for cloud object storage systems. And a validated
performance model of the cloud object storage system, which is
the basis of capacity planning, plays an important role in achieving
the cost-efficiency. Capacity Planning determines the number of re-
sources needed for the system with the workload anticipation and
the Service Level Agreement (SLA). Besides the initial deployment,
cloud providers also need to perform capacity planning whenever
cluster expansion occurs. The ever-growing number of blobs in the
cloud object storage system [21] magnifies the necessity of cluster
expansion. In addition to capacity planning, a simple yet accurate
performance model is also important for performing the “what-
if” analysis (the process of changing the inputs to see how those
changes will affect the outcomes) for the following applications. (1)
Overload Control, which enables the systems to turn away excess
requests during transient overloads; (2) Bottleneck Identification,
which locates the performance bottleneck from thousands or hun-
dreds of devices; (3) Elastic Storage, which dynamically powers on
and powers off storage nodes in reaction to workloads for energy
savings or operating cost savings (the system should meet the
performance requirements at the same time).

Modeling of multi-tiered Web applications [4,11,14,31] and
storage systems [15,32,38] is well studied. However, extending
these models to the scenarios of the cloud object storage system
is nontrivial due to the following reasons. (1) Diverse Disk Oper-
ations. At the backend server of the cloud object storage system,
serving a request involves several kinds of operations, including
index lookup, metadata read, and data read. The index is used
to locate the data object on the storage device, e.g. inodes of
the local file system. The metadata is the attributes of the data
object, e.g. checksum, create-time, user-defined attributes, etc.
These indexes and metadata are stored in the same storage device
along with the corresponding data objects. However, cost-sensitive
cloud providers prefer not providing “enough” memory for caching
the indexes and metadata at backend servers [2] (detailed in Sec-
tion 2). Hence, the operations, like index lookup and metadata read,
should be modeled, due to having a possibility of accessing disks.
Moreover, these diverse operations have different performance
characteristics and cache miss ratios. Models targeting other usage
scenarios fail to deal with this complexity. (2) Data Chunking. The
event-driven programming model uses the First Come First Serve
(FCFS) queue to schedule operations. Hence, in order to prevent the
system from being blocked by the operations that last a long time
(e.g. the large data read), the cloud object storage system reads and
transmits the data chunk by chunk in the context of the event-
driven programming model, instead of reading and transmitting
the whole data object at once. After having started the transmission
of a data chunk, the system would then perform the next operation,
which belongs to a different request, in the FCFS queue. As a result,
the cloud object storage system processes different requests in
an interleaving manner (detailed in Section 3.2). Models targeting
other systems fail to address this particular scenario of the cloud
object storage system. (3) Waiting Time for Being Accept()-ed.
The model has to quantify the waiting time of requests for being
accept()-ed at the backend servers. Accept() is a socket API func-
tion. The server uses accept() function to initialize the connection
for a request. And the request has to wait in the connection pool

before being accept()-ed by the server. The waiting time has a
significant impact on response latency of the cloud object storage
system. Tim Brecht et al. [3] first study this issue by comparing
the throughput and average response latency of different accept()
schemes. However, to the best of our knowledge, there is no
quantitative analysis of the waiting time for being accept()-ed.

We focus on building an analytic-based model that can cap-
ture the impact of the factors mentioned above. Although our
model requires some benchmarking based parameters (detailed
in Section 4), the benchmarking in our model is independent of
workloads, which makes our model differ from simulation-based
models. The workload is always a key factor for benchmarking in
the simulation-based models, which makes the simulation-based
models vulnerable to the changes of the workload.

We perform the evaluation using an OpenStack Swift testbed
by replaying a real-world trace (accessing trace of media objects
from Wikipedia [30]). In a variety of scenarios, the prediction
error of our model is 2.63% on average. Moreover, in cloud object
storage systems, the heavy workload would trigger timeouts and
retries. However, due to not considering the impact of timeouts
and retries, our model does not work in the context of such heavy
workloads. Hence, given the inputs, we also propose a method to
predict whether or not our model is applicable. According to the
evaluation, the method could provide accurate results on predict-
ing the applicability of our model.

In summary, our contributions include:

(1) The abstraction of union operation: We build an analytic-
based performance model for the cloud object storage system.
The model packs complicated operations in request processing
into queueing-theory friendly operations (the union operation).
This abstraction comprehensively leverages caching, multiple data
chunks, different types of disk operations, and queue discipline of
the event-driven programming model, which fully meets the needs
of the overall model.

(2) Modeling the waiting time for being accept()-ed: We
explore and exploit the fact that the requests waiting for being
accept()-ed at the backend servers may introduce a significant
impact on response latency of the cloud object storage system.
Furthermore, we also provide a quantitative analysis by revealing
the relationship between the waiting time for being accept()-ed
and the status of request processing queues.

(3) Predicting the model applicability: We propose a method
to predict whether or not our model is applicable. The prediction
results of our model could be inappropriate under the workload
that triggers timeouts and retries. We discuss all kinds of timeouts
that may occur in cloud object storage systems and predict the
occurrence of timeouts. Then, we determine the applicability of our
model according to the prediction results of timeout occurrence.

(4) Prototype implementation and evaluation: We imple-
ment all components of our model based on OpenStack Swift
and evaluate the accuracy of them using a real-world trace in
various scenarios. Moreover, our implementation is open-source
and available from https://github.com/ysu-hust/cosmodel.

The remainder of this paper is structured as follows. Section 2
provides backgrounds of the cloud object storage system. We de-
scribe our model and the methods to estimate model parameters
in Section 3 and Section 4, respectively. Section 5 introduces the
method to determine the model applicability. Section 6 presents
evaluation results. Related work is discussed in Section 7. Finally,
Section 8 concludes this paper.

2. Background
The cloud object storage system is a two-tiered web application,

as shown in Fig. 4. The servers in the frontend tier are responsible
for routing requests to their corresponding storage devices, and the

https://github.com/ysu-hust/cosmodel

Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83 73

servers in the backend tier are responsible for managing storage
devices and storing data objects. Each storage device has dedicated
process(es) for handling its corresponding requests at the backend
server. The process of a storage device performs the following
operations in sequence for handling a read request: (1) deter-
mining the data object for serving the request (request parsing);
(2) locating the data object on the storage device (index lookup);
(3) getting the attributes of the data object (metadata read); (4)
reading the data by a chunk (data read). For the systems exploiting
local file system for managing data objects at backend servers,
e.g. OpenStack Swift, the specific operations for the process of a
storage device are: (1) converting the name of the data object to the
local file path (request parsing); (2) opening the file (index lookup);
(3) reading the extended attributes of the file (metadata read); (4)
reading the file by a chunk (data read).

In the context of minimizing the TCO (Total Cost of Ownership),
the cloud providers prefer the cheap storage device with large
capacity (e.g. HDD) rather than the expensive storage device with
high performance (e.g. SSD). It is because the cloud object storage
system needs capacity more than performance. For example, in the
OpenStack Swift cluster of Wikipedia [27], the total consumed stor-
age capacity is about 670 TB and the maximum aggregated through-
put of the backend tier last year is only about 1.2 GB/s. Considered
that the response latency of HDD disks is in milliseconds, the
HDD disk is sufficient for meeting the performance requirement of
cloud object storage systems. In fact, production systems [2,21,36]
commonly store data in cheap HDD disks, instead of much more
expensive SSD disks (a 2 TB low-end SSD drive costs about $500, 10
times the 2 TB HDD drive). Furthermore, in order to reduce the TCO,
cost-sensitive cloud providers also prefer not providing “enough”
memory for caching the Index and Metadata (I&M) at backend
servers [2]. It is because (1) there could be a large volume of [&M
due to a large number of data objects, and (2) the ratio of the [&M
volume to the data volume could be high as the majority of data
objects are of small size [2,18,21,23] in production environments.
Suppose that the average size of data objects is about 50 kB [21,23],
and the average size of I&M of data objects is about 1 kB alto-
gether [23]. There are about 20 GB I&M for each 1 TB data in this
scenario. Hence, caching all I&M in memory is not cost-effective.
As a result, while processing a request at the backend tier, all of
the operations of different performance characteristics (including
index lookup, metadata read, and data read) have a possibility
of accessing HDD disks due to the long tail distribution of data
accessing [2,12]. These specificities introduce new challenges for
modeling the cloud object storage system. Methods of reducing the
size of the indexes have been proposed [2,21] so that the majority
of the index can be cached in memory. However, systems without
such optimization, e.g. OpenStack Swift, are still widely deployed
in production environments [23,24,36] due to being reliable and
mature, and the system with such optimization is only a special
case (index lookup rarely accesses the disks) of the systems ad-
dressed by our model.

The thread-per-connection and the event-driven programming
model are the main strategies for handling concurrency for cloud
object storage systems. This paper concentrates on modeling sys-
tems using the event-driven programming model because the
event-driven programming model is widely adopted in many fa-
mous cloud object storage systems (like OpenStack Swift, Ceph)
and production environments [5,24]. Moreover, the event-driven
programming model is superior to the thread-per-connection ar-
chitecture in both throughput and tail response latency [7].

3. Cloud object storage system modeling
In this section, we present the queueing-theory based model for

the cloud object storage system along with the assumptions of our
model.

3.1. Assumptions for modeling

We develop our model under the following assumptions.

(1) Poisson arrival. Our model assumes Poisson arrival of re-
quests for all the cases studied. For scale-out workloads, Poisson
process is considered a good model, which approximates the real
arrival process with reasonably small errors [17].

(2) Read heavy workloads. The model does not consider WRITE
and DELETE requests. The workloads for cloud object storage sys-
tems are read dominant [2,21,36], and the data objects are written
once, read often, never modified and rarely deleted. For example,
read traffic is > 99% in Wikipedia OpenStack Swift cluster [36], >
95% in LinkedIn Ambry [21], and > 98% in Facebook Haystack [2],
etc.

(3) Sufficient resources of computation and network. Re-
sources of computation and network are commonly sufficient in
cloud object storage systems. Take the OpenStack Swift cluster of
Wikipedia [36] as an example. In the recent one year, the maximum
aggregate arriving rate of requests is under 2000 requests per
second, and for any single backend server, the throughput is only
about 20 MB/s for most of the time and about 50 MB/s for the
maximum. At the same time, a 2.4 GHz CPU core could perform 25
Million instructions per second and the 1 Gbps Ethernet provides
about 100 MB/s network bandwidth.

(4) Steady state. Cloud object storage systems commonly work
in the steady state due to the stable workloads. For example, it
takes about 10 h for the request arriving rate to increase from 700
requests per second to 1500 requests per second in the OpenStack
Swift cluster of Wikipedia [36].

(5) Normal status. The model does not consider the impact of
timeouts, retries, and the software limits (e.g. system connection
pool size, maximum concurrency level, etc.). Because there would
be a lot of SLA violations when such software mechanisms and
limitations dominate the system performance. Instead of accurate
performance metrics, it is enough to know that the system does
not perform well in such situations.

3.2. Performance modeling at backend tier

When a request arrives at the backend tier, the request enters
one of the request processing queues of the corresponding storage
device. Each storage device has one or multiple queues determined
by the number of processes dedicated to the storage device. We
first build the performance model for the scenario of one queue and
then extend the model to the scenario of multiple queues. Suppose
that the number of queues for one storage device is Np.

When N, = 1: Serving a request involves performing the fol-
lowing operations in sequence at backend servers, request parsing,
index lookup, metadataread, and data read. As a result, the request
processing queue turns into an operation queue filled by diverse
operations. The left side queue in Fig. 1 is the operation queue,
and we observe that the process performs operations of different
requests in an interleaving manner. It is because the process reads
and transmits data chunks one by one, and performs network I/O
asynchronously. After having started sending a data chunk to the
frontend tier, the process switches to deal with other requests
instead of waiting for the data transmission to complete to send
another data chunk. In order to model this complicated operation
queue, we pack the diverse operations of request parsing, index
lookup, metadata read, and data read, into a queueing-theory
friendly operation, and we call it the union operation. A union
operation starts with a request parsing operation and includes
the following operations that are not request parsing operations.
Hence, each union operation may contain operations of different
requests. As a result, we transform the original operation queue
into a queue of union operations, which is shown as the right side

74 Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83

4 Operation Queue)
@ storage device process

RequestParsing
IndexLookup(a)
MetadataRead(a)
DataRead(a)

RequestParsing

IndexLookup(b)
MetadataRead(b)
DataRead(b)
DataRead(b)
DataRead(a)

g J

/ Operation Queue \

@ storage device process
=3 RequestParsing N
% IndexLookup(a)
i3 MetadataRead(a)
Q
& DataRead(a)
R
RequestParsing \
=8| IndexLookup(b)
o
g MetadataRead(b)
§ DataRead(b)
§" DataRead(b)
DataRead(a
D =)

Fig. 1. Queue of a storage device (single process per storage device).

queue in Fig. 1. With the assumption of Poisson arrival (detailed in
Section 3.1), we model the queue of union operations as an M/G/1
queue (a queueing system of Poisson arrivals, generally distributed
service time, and a single server). To solve this model, we have to
find the service time distribution of the union operation.

For a storage device, let r, ryq, denote the arrival rate of its
requests and data read operations. rgq, iS determined by r along
with the chunk size and the size of data objects. It is convenient to
measure or calculate these metrics. With the caching mechanism,
operations including index lookup, metadata read, and data read,
can be served either from memory or disk. Let Mingex, Mmeta, Mdata
denote the cache miss ratios of these operations respectively. The
index,(t), metay(t), datay(t) denote the probability density func-
tions (pdf.) of the latency while these operations are served from
disk, and we get the index,(t), metay(t), datay(t) via benchmarking
(detailed in Section 4). As the latency of memory is negligible,
we approximate it with 0. Let parsep(t), index(t), meta(t), data(t)
represent the pdf. of service time for request parsing, index lookup,
metadata read, and data read respectively. Then we can write

index(t) = indexa(t)Mindex + 6(£)(1 — Mindex),
meta(t) = metag(t)Mmeta + 8(£)(1 — Mineta),
data(t) = datad(t)mdata + 5(t)(1 - mdata),

__Jtoo,t=0. . .
where, §(t) _J 0.t 0 is the DiracDelta function.
Consider a data read not following its corresponding metadata

read operation as the extra data read. It is safe to assume that
the arrivals of the extra data chunk reads of different requests are
independent because they are issued by different processes from
the frontend tier [17]. In other words, we could assume that the
arrival of extra data read follows Poisson arrival. So, we could use
the Poisson distribution to model the amount of extra data reads in
one union operation, and the average number of extra data reads in
one union operation is p = @ In summary, the pdf. and mean
value of the service time of the union operation are

o0 ‘e_p
Bpe(t) = Z[T(parsebe * index * meta * dat@ ™™)(t)],

j=0

Bhe = Z[’y
j=0

P

e” - _ -
i (parsey, + index + meta + (j + 1)data)],

Where, parsey., index, meta, data are the average latencies of re-
quest parsing, index lookup, metadata read and data read re-
spectively. Since the exact correlation among the service time of
different operations is unknown, we approximate the operations
using independent operations here. Hence, the service time of the
union operation is the convolution of the service time of involved
operations. We discuss the impact of this approximation in Sec-
tion 6.3.

Finally, we get the Laplace Transform of the waiting time pdf. of
the backend queue based on Pollaczek-Khinchin formulas [29].
CIWael(s) = =Dl (1)

TL[Bpel(s)+s—71

The process uses the metadata to form the response headers
and starts responding a request after it gets the metadata and the
first data chunk. So the pdf. of the response latency at backend tier
is

Spe(t) = (Whe * parsepe * index x meta * data)(t). (2)

When Ny, € {2, 3,4,5...}: Fig. 2 displays the queueing status
for a storage device with multiple processes at the backend server.
When a request arrives at the backend server, one of the N,
processes accepts the request. Then the request turns into a bunch
of operations and enters the operation queue of the corresponding
process. Serving some operations requires accessing disk due to the
cache miss, and such operations will enter the operation queue of
the disk. The process will be blocked until the operation, which
enters the disk, completes. There is no ready-to-use solution to
predict the distribution of the response latency for such a queueing
network, as discussed in Section 7. Moreover, we cannot directly
apply the solution for Ny, = 1 here. In order to solve this problem,
we continue relying on the abstraction of union operation. The
key idea is to transform the queueing network of Ny, > 1 to the
queueing network of Ny, = 1.

In order to conduct the transformation, we first divide the union
operation into two classes: the Cache Hit Union operation (CHU)
and the Cache Miss Union operation (CMU). A union operation
is a CHU if it does not contain any operation accessing the disk,
otherwise, it is a CHM. As all of the cache miss operations enter
one operation queue of the disk as shown in Fig. 2, the CMUs in
different process’s operation queues are performed sequentially.

Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83

4 Operation Queue)
@ storage device process 1

L ES CETS T

IndexLookup(a)

MetadataRead(a)

uonesadQ uoiun

DataRead(a)

4 Operation Queue)
@ storage device process N

RequestParsing
IndexLookup(c)

MetadataRead(c)

uonesadp uolun

DataRead(c)

|

(" Operation Queue)
@ Disk
IndexLookup(c)
MetadataRead(c)
DataRead(c)
IndexLookup(d)
DataRead(a)
MetadataRead(d)

DataRead(d)

IndexLookup(b)

MetadataRead(b)

75

RequestParsing eee RequestParsing
c
£l IndexLookup(b) g IndexLookup(d)
=1 =]
-g MetadataRead(b) .g MetadataRead(d)
g" DataRead(b) % DataRead(d)
DataRead(b) DataRead(c)
D J, D

!

g

l DataRead(b)

DataRead(c)

Storage Device (Disk)

DataRead(b)

Fig. 2. Queues of a storage device (Np, processes per storage device).

6 Operation Queue)

@ storage device process 1

(Operation Queue
@ storage device process N

b-CHU

cMuU

cMuU

)

(" Aggregated Queue)

eoe nb-CHU
nb-CHU
nb-CHU nb-CHU
nb-CHU nb-CHU
& A
=
g

Storage Device (Disk)

Fig. 3. The aggregated queue that approximates the multiple queues of a storage device.

According to whether or not a CHU is blocked by a CMU, we further
divide the CHU into two classes: the blocked CHU (b-CHU) and
the not blocked CHU (nb-CHU). Considered the huge performance
gap between memory and disk, we assume that the service time
of a CHU is negligible. Hence the response latency of a CHU is
equal to its waiting time in the operation queue of a process. In
another word, a CHU’s response latency is determined by the time
of being blocked by CMUs. Under such assumption, the nb-CHUs
are finished processing instantly. Therefore we could ignore nb-
CHUs while analyzing the queueing network. Due to the sequential
execution of CMUs, we use an aggregated queue to approximate
the multiple operation queues for CMUs and b-CHUs as shown in

Fig. 3. The aggregated queue is a queueing network that is same
as the queueing network of N, = 1. To solve this model, we have
to: (1) find the proportion of nb-CHUS (P,;;_cyy) and (2) determine
properties of the aggregated queue, including the arriving rate, the
mean value and the distribution of service time.

A CHU is an nb-CHU only if there are idle process(es) when it
arrives, and a process is idle when its operation queue is empty.
The number of union operations in the system determines the
probability of idle process. We only consider CMUs while counting
the union operations in the system due to the negligible service
time of CHUs. Suppose loyu(j) is the probability mass function
(pmf.) of the number of CMUs in the system. In order to get Iy (),

76 Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83

Ve
' Frontend Server Frontend Server l
I |
I Request (4) |
| |
| 000000 |
| |
: :
| . |
\ Frontend Tier J
(
(0
e P F——~.
[Backend Server Backend Server Backend Server |
 [oevice t][pevice 2] - |BeliceR] vevice 4 [BEVIEES] oevice 6| |
|
\ Backend Tier Y,
N e —_—

Fig. 4. The request queues at the frontend servers.

we assume all CMUs enter an M/G/1 queue, which is reasonable
due to the sequential execution of CMUs. Hence Iy (j) is equal
to the queue length pmf. of the M/G/1 queue. Suppose Mypjon iS
the probability that a union operation is a CMU. According to the
definition of CMU, we have

00 .
peP)
Mypjion = 1 — Z[m (1 - mindex)(l - mmem)(] - mdam)’+1]~
=0

Suppose Bawu, Vemus Bemy(t) are the mean value, variance and
pdf. of the CMU service time, respectively. Suppose Bcyu, Veru,
Bcyy(t) are the mean value, variance and pdf. of the CHU service
time, respectively. It is easy to obtain Beyy, Veny, Beru(t), then we
could obtain Beyy, Vemy, Bawu(t) with following formulas:

BC;VIU = (B;e - (l - munion)BC;-IU)/munion,
Vemu = (Vie + (1 — Mypion)Veru)/ Munion,
L[Bemu1(s) = (L[Bpel(s) — (1 — Muynion)LI[Bcru 1(5))/ Munion,

where V. is the service time variance of the overall union opera-
tion. According to Pollaczek-Khinchin formulas [29], a close form
queue length pmf. of an M/G/1 queue does not always exist. There-
fore, we use an estimating approach from Myers and Vernon [19].
Then we can write

lemu(G) = uCMUQimp(1 — Qump)s

where ucyy = BeayuMunionT is the utilization of the M/Q/1 queue,

2 =
M and Cg — ./ /VCMU/BCMU'

2+ueyy (e —1)°

Suppose there are j CMUs in the system. For a CMU, we assume
that the possibility of this CMU in either operation queue is equal.
Then, calculating the distribution of the j CMUs among the multiple
operation queues is a classical problem (distributing distinct balls
into distinct bins) in Combinatorial Theory [10]. When 0 < j < Np,,
there must be at least one idle process. When j > Nj,, we could
calculate the probability of idle process Pigie(j) = 1— w

qtmp =

’

be
where StirlingS2(x, y) is the Stirling number of the second kind,
which is the number of ways to puts x balls into y non-empty bins.

Finally, we can get the proportion of nb-CHUs (or the probability
that a union operation is a nb-CHU):

Npe—1 [
Pap—chy = (1= Munion)(Y lawu() + Y Hemu G)PiaeG)))-
j=0 J=Npe

Suppose the arriving rate of the aggregated queue is rqg, then
g = (1 — Pup—cuu)r as the aggregated queue only contains CMUs
and b-CHUs. For the operations of index lookup, metadata read, and
data read in the aggregated queue, let Mingex—ag, Mmeta—ag» Mdata—ag
denote the cache miss ratios of these operations, respectively. Then
we have Mindex—ag = mindex/(l — Prp—cHu)- Mmeta—ag = mme[a/(l -
Pup—chu)v and Mgata—ag = Tndam/(‘l — Pup—chu) With Tag, Mindex—ag>
Mmeta—ag» aNd Mgqta—ag, We could obtain the waiting time pdf. of the
aggregated queue (Wyg(t)) using the same method for solving the
queue model in Ny, = 1 scenario. Then the pdf. of the waiting time
(Whe) and the pdf. of the response latency (Sy.(t)) at the backend
tier are:

Whe(t) = Pap—criud(t) + (1 — Prp_cHy)Wog(t) (3)
Spe(t) = (Whe % parsep * index * meta * data)(t). (4)

3.3. Performance modeling at frontend tier

The response latency of a request at the frontend tier contains
three main components: the queueing latency at the frontend tier,
the waiting time for being accept()-ed at the backend tier, and the
response latency of the storage device at the backend tier.

Queueing latency at the frontend tier: In the frontend tier
of homogeneous servers, the processes in the frontend tier are
identical to each other. So, the distribution of the overall queueing
latency is the same as that of any single process. In the frontend tier
of heterogeneous servers, we can divide the servers into several
sets of homogeneous servers, and calculate distributions of the
queueing latency for each set separately. Fig. 4 shows the queues
of different processes in the frontend tier. Suppose that there are
Nr. frontend tier processes, and the requests arriving rate is R. So,

Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83 77

4 R

Backend Server

Request Processing
Connection Pool Queve
Requestyrrp(a)
Requestonn(f) Request,rr(b)
Requesteom(g) |/ || REQUEsturm(c)
k Accept
L L
Request on(h) Requestyrp(d)

(a) before accept()

/

Backend Server

\

Request Processing
Connection Pool Queue
Requestrp(d)
Request onn(h) HTTP
Accept
= ——=F
i) | [Reauestirre(g)
Request onnl(i)] o(f)

(b) after accept()

Fig. 5. Waiting time for being accept()-ed.

arriving rate for one process P; at the frontend tier is r; = N%' The
pdf. and mean value of request parsing time for processes in the
frontend tier are parser(t) and parser. We could also use the M/G/1
queue to model the queue of one process in the frontend tier [17].

Then, the Laplace transform of queueing latency pdf. is
(1 — parsepr;)sC[parseg](s)
riL[parsep](s) +s — 1

L[SI(s) = (5)

Waiting time for being accept()-ed: Sending a request from
the frontend tier to the backend tier involves two steps in se-
quence, building a TCP connection and sending an HTTP request.
However, a connecting request from the frontend tier has to wait
in the connection pool before being accept()-ed by a process of the
storage device at the backend server. Since the accept() operation
is scheduled as identical as ordinary operations for processing
requests, the accept() operation also has to wait in the request
processing queue. Fig. 5a shows the situation before the connecting
requests of “f” and “g” being accept()-ed. They have to stay in the
connection pool until the process finished processing the HTTP
requests of “a”, “b”, and “c”. Fig. 5b shows the situation after the
connecting requests of “f’ and “g” are accept()-ed. After being
accept()-ed, the frontend servers will send the HTTP requests of “f”
and “g” to the backend server according to their queueing statuses.
Given an accept() operation, its life begins at the last time when
the point requests in the connection pool are accept()-ed, and its
life ends at the time point when the requests are accept()-ed. The
arrival of an accept() operation refers to the accept() operation be-
ing appended to the tail of requests processing queue and starting
to wait for being performed. Assuming that the arrival of accept()
operations follows the Poisson process, the lifetime pdf. (A(t)) of
accept() operations is the same as the waiting time pdf. of the
request processing queue at the backend server according to the
PASTA theorem [37]. A connecting request may arrive at any time
point during the lifetime of an accept() operation. Suppose that
the waiting time pdf. of the connecting request for being accept()-
ed is W(t). Then W,(t) = [, (A(x):*)dx. In our model, we use
an approximation of Wy(t), which assumes that the waiting time
equal to the accept() lifetime for all of the connecting requests
that arrive during the life of the accept() operation. So the pdf. of
waiting time for being accept()-ed is

Wa(t) = A(t) = Wh(t). (6)

Our approximation overestimates the waiting time of the con-
necting requests, which arrive after the life of the accept() having
already started. This overestimation increases as the length of
requests processing queue increases. We evaluate the accuracy

of the model of waiting time for being accept()-ed along with its
approximation in Section 6.3.

In summary, at the frontend tier, the response latency pdf.
(Sp(t)) of a storage device can be calculated by combining (us-
ing convolution) the 3 latency components: pdf. of the queueing
latency at the frontend tier (S4), pdf. of waiting time for being
accept()-ed at the backend tier (W,), and pdf. of the response
latency at the backend tier (S). The Sy, is from Section 3.2.

Sfe(t) = (Sq * Wy * Spe (1) (7)

3.4, System modeling

Suppose the set of the storage devices is D. Given a storage
device D;, D; € D, the cumulative distribution function (cdf.) of
the response latency for device D; at the frontend tier is Sj(t).
The requests arriving rate of D; is rj. The latency distribution of
the whole system is actually a mixture distribution. The mixture
components are the latency distributions of each storage device at
the frontend tier, and for each storage device, the mixture weight
is its workloads proportion. Since we have already known the
distribution of the response latency for each storage device at the
frontend tier, we could calculate the cdf. of the response latency
for the whole system (S(t)) with the following formula:

o1 _ el
(0= anenrj .

4. Estimating the model parameters

(8)

Our model requires several parameters as inputs, and the var-
ious parameters of our model fall into two categories: device
performance properties and system online metrics. In this section,
we describe the methods of estimating these various parameters
required by our model.

4.1. Device performance properties

The distribution of disk service time. We assume random
accessing of data objects for a storage device because the requests
come from millions of users and the data objects are randomly
distributed among storage devices based on hashing. Hence, we
benchmark the disk with the following steps. First, we fill the
disk with data objects; Second, we sequentially access (perform
the operations of index lookup, metadata read, and data read) a
number of randomly selected data objects, and record the latency
for each operation. We also limit the max amount of outstanding

78 Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83

1.0 R— .
0.8 o * Index Lookup (fitting)
—®— Index Lookup (recorded)
E 0.6 = * Metadata Read (fitting)
o 0.4 —*+— Metadata Read (recorded)
Data Read (fitting)
02 Data Read (recorded)
0.0
0 10 20 30 40 50 60 70 80

Service Time (ms)

Fig. 6. The fitting results of the disk service time.

operation to 1 to avoid queueing of operations; Finally, we use the
distribution fitting to get the distribution of disk service time for
different kinds of operations separately. Suppose the f(t) is the pdf.
of the distribution, which is used to fit the recorded latencies. The
Laplace Transform of f(t) (£[f(t)]) or an analytical approximation
of the £[f(t)] should exist, and the mean value of the distribution
should exist as well, because our model needs them for perform-
ing the calculations as shown in Section 3. Moreover, a mixture
distribution could be used for fitting the recorded latencies, as
long as the mixture distribution satisfies the above requirements.
For our testbed, we test 4 distributions for fitting, including the
Exponential, Degenerate, Normal, and Gamma distribution. The
Gamma distribution demonstrates the best result among them.
Fig. 6 shows the fitting results using Gamma distribution. The
Gamma distribution is defined by two parameters k (shape param-
eter) and [(rate parameter), the Laplace Transform of its pdf. is
£[B](s) = I¥(s +)*, and the mean value is b = %. Suppose the
bi, b, by are the mean disk service times of index lookup, metadata
read, and data read respectively, we assume that the proportion of
b;, by, by remains in the context of fluctuating disk service time.

The distribution of request parsing latency. In order to obtain
the raw latency of request parsing, we benchmark the cloud object
storage system following two principles: avoiding accessing disks
and avoiding requests queueing. To satisfy these two restrictions,
we generate a close loop workload, with which all requests read
the same data object during benchmarking. So, the data object
could be served from memory due to being cached. We also limit
the max amount of outstanding requests to 1 to avoid requests
queueing. We record the following metrics for each request: Dy,
(duration between a frontend tier process receives a request and
starts responding) and Dy, (duration between a backend tier pro-
cess receives a request and starts responding). The network latency
of sending data from backend tier to frontend tier is Dpey =
%. For one request, its parsing latency at the backend
tier is Dyp, and its parsing latency at frontend tier is D — Dpp — Dre.
Similarly, we use the distribution fitting to get the distribution of
request parsing latency. In our testbed, the request parsing latency
is almost constant (Degenerate distribution) at both the frontend
tier and the backend tier.

4.2. System online metrics

Generally, the request arriving rates are available from the
monitoring software of storage systems, and it is also easy to
obtain the arriving rate of data read operations by counting data
chunks. In terms of cache miss ratios, we use a latency threshold
to distinguish a cache hit from a miss. Thanks to the huge speed
gap between memory and disk, the approach of latency threshold
could provide an accurate estimation of cache miss ratio. In our
testbed, we use 0.015 ms as the latency threshold. As Linux only
provides the summary value for disk service time, in order to obtain

the average service times of different kind operations, we exploit
the proportion of service times from Section 4.1. Suppose that r is
the request arriving rate, and ry is the arriving rates of data read
operations. Suppose the overall service time is b, and b;, by, by are
the service times for index lookup, metadata read, and data read
respectively. m;, m,,,, my are the corresponding cache miss ratios.
Di, Pm» Dq are the corresponding proportions. So we can obtain
bi, by, by by solving the following equations.

bi/pi = bm/Pm = ba/pd
mibir + myby,r + mgbgry = (mir + mpr + myry)b

5. Applicability of the model

In this section, we discuss the applicability of our model. Time-
out and retry are the essential exception handling mechanisms in
cloud object storage systems. On one hand, timeouts could be trig-
gered by some unexpected factors (e.g. hardware failures, network
congestion, shared-resource contention, etc.), and the discussion
of such factors is out of the scope of this paper. On the other
hand, timeouts occur due to the heavy workloads. Since our model
assumes that there is no timeout and retry, the prediction results
would be inappropriate if the workload was beyond a threshold.
Therefore, given the inputs, we should develop a method to de-
termine whether or not our model is applicable. The key of the
method is to predict the occurrence of timeouts. Then, we could
use the following rule to determine the applicability of our model.

Our model is applicable when there is no timeout.

There are two kinds of timeouts in the cloud object storage
system: the Connect Timeout and the Network Timeout. The con-
nect timeout occurs when a frontend process does not receive the
response of a connecting request within the specified time period.
The network timeout happens when a frontend process does not
receive the response of an HTTP request within the specified time
period.

Suppose the maximum wait time for a connecting request and
an HTTP request is Teon, and Ty, respectively. In the context of
Poisson arrival, when Ty, and Ty are finite, the possibility (P)
of timeout occurrence is always larger than 0 according to the
queueing theory, as long as the request arriving rate is greater
than 0. However, it does not mean that we can consider that time-
outs always occur while predicting the occurrence of timeouts. In
practice, we should consider that there is no timeout when the
possibility of timeout occurrence is too low that can be ignored.
Hence we use a threshold Pyes to determine whether there are
timeouts with the following rule:

Timeouts occur when P > Pyyes, and No timeout when P < Pypyes.

We first consider the scenario that T.,, and Ty, are both in-
finite. In this scenario, we could predict the percentage (Piys) of
requests not being responded within the wait time bounds, ex-
ploiting the techniques that are used to develop our model in
Section 3. Suppose P, is the percentage of connecting requests
that do not response in Teopnp, Prer is the percentage of HTTP requests
that do not response in Ty, and then there is

Pinf = Pconn +Pnet-

The requests, of which the frontend processes do not receive the
corresponding response in time, result in timeouts when there is a
finite limitation on the waiting time for a request. Nevertheless, Pi
is not the exact possibility of timeout occurrence (P) due to the im-
pacts of timeouts and retries on the system performance. Because
either Py or P increases monotonically relative to the workload,
there is a positive correlation between P;s and P. Moreover, we
could use P to approximate P when P is small. It is because the
small P suggests that there are only a small number of timeouts,
which can only have a limited impact on the response latency.

Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83 79

In theory, the range of Pyyes is 0 < Pyyes < 1. However, The
Pyhres Should be small to effectively distinguish the case of timeouts
existing from the case of no timeout. The impact of timeouts and
retries should be negligible for any P < Py.s. Hence, when P =
Pihres, we have P = Pyy. Due to the positive correlation between
Py and P, we could also obtain following conclusions: (1) when
P > Piyres, there is Piyp > Pipres; (2) When P < Pyyes, there is
Pins < Punres. Therefore, we could use Py to replace P for predicting
the occurrence of timeouts. Then we have the following rule:

Timeouts occur when Pz > Pgyes, and No timeout when Py <
P[hres-

The methods for calculating Pgon, and Py are as follows. Sup-
pose the set of the storage devices is D. Given a storage device
D;, Dj € D, the request arriving rate for Dj is rj, the cdf. of response
waiting time for connecting requests is Wy, and the cdf. of
response waiting time for HTTP requests is W”,,. As the response
waiting time for a connecting request is approximate to the waiting
time for being accept()-ed of the connecting request, Womn(t) =
fot [Wa(x)]dx, where Wy(x) is the pdf. of waiting time for being
accept()-ed of D; (we can get WJ(x) according to Section 3.3). As
the response waiting time for a HTTP request is approximate to the
response latency at backend tier, W2,, = for [S},,(x)]dx, where S}, (x)
is the pdf. of the response latency at backend tier for D; (we can get
S{,e(x) according to Section 3.2). Hence, Peonn, Pret are:

ZDjeD [rjwzonn(Tconn)]

Peorn = 1 —
ZDjeD Tj
P 1 ZDjGD[erfle[(Tnet)]
net = 1 — .
ZDJ'ED Tj

6. Evaluation

In this section, we present our experimental setup and evaluate
our model with following goals.

(1) Evaluate the accuracy of our model for diverse SLAs, work-
loads, and system configurations.

(2) Evaluate the contributions of the core components (the
abstraction of union operation, the model of waiting time for being
accept()-ed) to the overall accuracy of our model.

(3) Evaluate the accuracy of the method for predicting the
applicability of our model.

6.1. Experimental setup

Our testbed is a 7-nodes OpenStack Swift cluster, including
3 frontend servers and 4 backend servers, and we use 1 Gbps
Ethernet to connect the frontend and backend servers. There is
a 1 TB HDD disk attached to each backend server. Data objects
are mapped to 1024 partitions based on hashing, and each parti-
tion has 3 replicas. OpenStack Swift evenly distributes all replicas
among the 4 disks (the replicas of the same partition are placed
on different disks). There are 7 extra nodes serving as workload
generators. The workload generators and frontend servers are con-
nected via 40 Gbps Infiniband. Such configuration prevents work-
load generators from being the bottleneck of the whole system.
Each node has four 2.4 GHz Intel E5620 quad-core CPUs, 24 GB of
memory, and runs Centos 7. Except that we limit the memory of
the backend servers to 5 GB, and we perform such limitation to
imitate the production environments of the cloud object storage
system, in which backend servers do not have sufficient memory
space for serving as a cache (e.g. in the OpenStack Swift cluster
of Wikipedia, the RAM-to-disk ratios of the backend server range
from about 1:300 to 1:800 [27]).

We generate the workload based on a 50 h trace of media
objects accessing from Wikipedia. This trace is extracted from
the trace provided along with wikibench [30] (the URL of me-
dia object contains “upload.wikimedia.org”). However, the trace
does not provide any information on object size. We determine
the size of each media object by directly requesting the object
from Wikipedia. And about 45% of the objects no longer exist in
Wikipedia, and so the requests for these objects are overlooked in
our workload. The average size of remaining objects is about 32 kB.
The average size of requests is about 10 kB.

We use the SwiftStack Benchmark Suite (ssbench) [28] as our
workload generator. Ssbench contains multiple workers (as Open-
Stack Swift clients, performing requests) and one master (gener-
ating requests and distributing them among the workers). Load
balancing is a built-in feature of ssbench, which sends each request
to a random frontend server, so we do not use dedicated load
balancers in our system. We modify ssbench to support replaying
trace and issuing requests in an open loop manner. We measure the
requests latency at frontend servers instead of ssbench workers.
Because, in practice, the latency introduced by clients is out of the
control from the perspective of a cloud object storage system (the
client could be any laptop behind Internet), and our model focuses
on the response latency of the cloud object storage system. We
control the rate of generating requests at the ssbench master.

6.2. The accuracy of the model

We conduct a set of experiments to evaluate the accuracy of our
model on predicting the percentage of requests meeting a response
latency requirement. We perform the evaluation for two scenarios,
S1 and S16. At the backend tier, we use the configuration of 1/16
process(es) per storage device for the scenario S1/S16 respectively.
For each scenario, we carry out the experiments with 3 different
SLAs (response latency requirements of 10 ms, 50 ms, and 100 ms).
We conduct separate experiments to validate the model for dif-
ferent SLAs in the same scenario. In each experiment, the system
counts the number of requests that meet or violate the SLA for each
storage device at frontend tiers for each minute. We predict the
percentage of requests meeting an SLA using the average values of
system metrics in every 5 min of the same arriving rate of requests.
As discussed in Section 3.1, we only analyze the prediction results
when there is no timeout and retry. We do not perform a direct
comparison with existing models due to the following reasons. (1)
Existing models [4,11,14,31,38] predict the average performance
metrics rather than the percentage of request meeting an SLA;
(2) Existing models [35,39] rely on simulation-based technique
for prediction; (3) Existing models [15,32,38] focus on modeling
different factors (e.g. data striping) of the system instead of the
factors addressed by our model.

We generate workloads by changing the request arriving rate of
the trace described in Section 6.1. In order to control the arriving
rate of requests, we change the timestamp field of each request
in the trace. With our modification, a workload contains 3 phases:
warmup phase lasts 3 h with a fixed arriving rate, transition phase
lasts 1 h with a fixed arriving rate, and benchmarking phase with
a varying arriving rate and each arriving rate lasts 5 min. The
transition phase exists to make sure that all of the requests from
the warmup phase finish before the benchmarking phase. The arrival
of requests follows Poisson process. We generate such synthetic
workloads so that we could experiment with a broader range of
arriving rates, which is not limited by the actual arriving rates
of the trace. The workloads for scenario S1 and S16 are different
due to different system configurations. During warmup phase, the
arriving rate is 300 requests per second for scenario S1 and 500
for scenario S16. The arriving rate is 10 requests per second for
all scenarios during the transition phase. During the benchmarking

80 Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83

100% 100%
—¥— Observed ~
0% noWTA Model
—@— ODOPR Model
60% Our Model

—¥— Observed
noWTA Model

Percentage
Percentage

Our Model

—®— ODOPR Model

100% T

—¥— Observed
noWTA Model

—@®— ODOPR Model
Our Model

Percentage

60%

20%

BN " Eiror of Our Model

Percentage
Percentage

B Eror o Gur Model " *EHII]R]

S Error of Our Model |

Percentage

0 15 30 45 0 15
Time (5 mins)

(a) 10ms

Time (5 mins)

(b) 50ms

20%
30 45 0 15 30 45

Time (5 mins)

(c) 100ms

Fig. 7. Prediction results of different SLAs for scenario S1 (1 process per storage device). The x-axis shows the execution time.

—¥— Observed

80% noWTA Model
—@®— ODOPR Model
g % Our Model

—¥— Observed
noWTA Model

—@— ODOPR Model
Our Model

Percentage
3

Percentage
<
/ ‘
ol
Percentage
b

000000009 100% BP0 0032210900000

—¥— Observed

noWTA Model |
8% | —@~ ODOPR Model |
Our Model

ESS Error of Our Model

Percentage
Percentage

ESS Error of Our Model '"'"““El|

IS Error of Our Model

Percentage
8

0 15 30 45 60 75 0 15 30

Time (5 mins)

(a) 10ms

Time (5 mins)

(b) 50ms

45 60 75 90 0 15 30 45 60 75

Time (5 mins)

(c) 100ms

Fig. 8. Prediction results of different SLAs for scenario S16 (16 processes per storage device). The x-axis shows the execution time.

phase, the arriving rate starts at 10 requests per second and ends
at 350 for S1 (600 for S16), with the increase of 5.

Figs. 7 and 8 show the observed percentages of requests meet-
ing SLAs (10 ms, 50 ms, 100 ms), and the predicted percentages of
our model for the scenario S1 and S16, respectively. And Figs. 7 and
8 also display the prediction errors of our model (the difference
between predicted and observed percentages) at the bottom of
each graph. In Figs. 7 and 8, the x-axis depicts the execution time
of the corresponding experiment, and the execution time actually
corresponds the arriving rate during the benchmarking phase. The
number of points is different in the graphs of Fig. 7, so are the
graphs in Fig. 8. The reason is that timeouts do not occur at the
exact identical time point in different experiments (randomness
exists in the replica choosing scheme of OpenStack Swift, etc.).
For all figures in Section 6, we use identical scales of y-axis for
prediction errors to enable comparability.

For the scenario S1 (Fig. 7), our model underestimates the
percentage of requests meeting an SLA in general. The underes-
timation is due to the assumption that the service time of an
operation is independent. As a matter of fact, a correlation exists
because operations of a request are more likely to have similar
cache behaviors. For example, if an index lookup operation is a
cache-hit operation, the corresponding metadata read operation
would be more likely a cache-hit operation. Hence, our model
underestimates the probability that a majority of operations in a
request are cache hit operations. In another word, our model un-
derestimates the percentage of fast-responding requests. Similarly,
our model also underestimates the percentage of long-processing
requests. On one hand, the underestimation of fast-responding
requests leads to the underestimation of requests meeting an
SLA when the latency requirement is relatively low. On the other
hand, the underestimation of long-processing requests results in
the overestimation of requests meeting a relatively high latency
requirement. Whether a latency requirement being low or high is

not absolute, it depends on the distribution of the response latency.
Consider the SLA of 100 ms, in the low load region, 100 ms is a
high latency requirement as the response latency is relatively low
in general. However, in the high load region, 100 ms is a low latency
requirement due to the overall high response latency.

Furthermore, we observe that the underestimation is more se-
rious in high load region. The reasons are as follows: (1) the greater
overestimation of Waiting Time for being Accept()-ed (WTA) at
higher loads due to the longer request processing queue (detailed
in Section 3.3); (2) the greater overestimation of waiting time in
Request Processing Queue (RPQ) at higher workload. It takes longer
for the system to reach the steady state at higher workload due
to the exponentially increased expected length of RPQ, and our
model overestimates the length of RPQ for a growing workload
due to assuming a steady state system. So, there is a greater
overestimation of the length of RPQ at higher loads, and the length
of RPQ is positively correlated with the waiting time in RPQ.

Different from the scenario S1 (Fig. 7), our model generally
overestimates the percentage of requests meeting an SLA for the
scenario S16 (Fig. 8). There are following reasons: (1) our model
uses 0 to approximate the service time of the Cache Hit Union
operation (detailed in Section 3.2). Such approximation results in
an underestimation of response latency due to ignoring the service
time of request parsing. (2) our model assumes that requests are
distributed among backend processes corresponding to the storage
device with the equivalent probability. Such assumption is true in
the long term. However, load imbalance occurs in short periods of
time. It is because each process may batch accept requests or be
blocked by long processing requests. Our model underestimates
the response latency as the load imbalance will lead to the in-
creased response latency. As a result, our model overestimates the
percentage of requests meeting an SLA due to the underestimation
of the response latency.

Table 1 summarizes the prediction errors (absolute value) of our
model for the different scenarios and SLAs. For all cases, the average

Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83 81

600

BN Observed
ZZ22 Predicted 500

BN Observed
Predicted

@
3
3

Tmin (reqs/s)
W
y

min (reqs/s)

T
)
=1
3

7
é
.
/
7

IS
EY

(a) 0.1%

(b) 0.5%

BN Observed
zZZ Predicted

Tmin (1€QS/S)

(c) 1.0%

Fig. 9. The observed and predicted request arriving rate (rmi,) that divides the applicable cases of our model from inapplicable cases when Pyyyes = 0.1%, 0.5%, and 1.0%.

Table 1
The summary of prediction errors for our model.
Scenario SLA Best case Worst case Mean
10 ms 1.01% 3.82% 2.91%
S1 50 ms 0.86% 15.04% 3.47%
100 ms 0.02% 11.70% 1.26%
10 ms 0.16% 5.03% 2.64%
S16 50 ms 0.00% 10.90% 4.00%
100 ms 0.07% 2.96% 1.50%
Table 2
The mean prediction errors of different models.
Scenario SLA Our model ODOPR model noWTA model
10 ms 2.91% 6.54% 2.45%
S1 50 ms 3.47% 9.41% 5.18%
100 ms 1.26% 4.80% 3.26%
10 ms 2.64% 27.06% 8.19%
S16 50 ms 4.00% 12.78% 7.60%
100 ms 1.50% 3.13% 2.61%

prediction error of our model is 2.63% and the worst case error is
15.04%.

6.3. The contribution of core components

We reveal the contributions of the core components of our
model to the overall accuracy by comparing our model with two
baseline models: ODOPR model and noWTA model. First, the
ODOPR model considers cache hit for all index lookup, metadata
read, and extra data read. The ODOPR model imitates the existing
models assuming no more than One Disk Operation Per Request
(ODOPR) at storage servers. Second, the noWTA model considers
that there is no Waiting Time for being Accept()-ed (noWTA). The
noWTA model imitates the existing models not taking the WTA
into consideration. Table 2 shows the average prediction errors
(absolute value) of the ODOPR model, the noWTA model and our
model in the context of devise scenarios and SLAs.

The contribution of the abstraction of union operation: Our
model relies on the abstraction of union operation for modeling
diverse disk operations (index lookup, metadata read, data read)
and data chunking of event-driven programming model. Compared
with the ODOPR model, which does not consider these factors, our
model reduces the average prediction errors by 52% to 90% (relative
percentage) for different scenarios and SLAs.

The contribution of modeling waiting time for being
accept()-ed: Compared with the noWTA model, which does not
consider the WTA, our model reduces the average prediction errors
by 33% to 68% (relative percentage) for different scenarios and
SLAs, except the 10 ms SLA in the scenario S1. As a matter of
fact, our model increases the average prediction errors by 19%

(relative percentage) for the 10 ms SLA in the scenario S1. It is
because the overestimation of the WTA introduces more errors
than overlooking the WTA. The 10 ms SLA is an extreme case, and
less than 25% of requests respond within 10 ms even under the
lightest workload.

6.4. The accuracy of prediction on model applicability

We conduct a set of experiments to evaluate the accuracy of
the method on predicting the applicability of our model. In the
experiments, we use the default timeout configurations of Open-
Stack Swift. To be specific, the maximum wait time for a connecting
request is 0.5 s and the maximum wait time for an HTTP request is
10s. We evaluate the method for 3 different scenarios: the scenario
of Npe = 1, Npe = 4, and Ny, = 16, where the N, is the number
of backend processes per storage device. For each scenario, we
generate the workload as same as the workload of scenario S16
from Section 6.2 and record the number of timeouts for each time
period of same request arriving rate. And we run each experiment
for 3 times.

We determine whether or not our model is applicable according
to the rules in Section 5. Suppose n, is the number of total timeouts
when the request arriving rate is r reqs/s (each request arriving rate
lasts 5 min), the observed percentage of timeouts over requests is
Pobserved = %. Then, Our model is applicable when Pypserved = Penres,
and inapplicable when Popserved < Pihres, Where Pyppes is the threshold
distinguishing the case that there are timeouts from the case of no
timeout.

Considered the situation that timeouts occur when the request
arriving rate is rocqr, We can infer that there are timeouts when the
request arriving rate (r) is higher than .. The reason is that the
queueing latency grows along with the request arriving rate while
other conditions (including cache miss ratios, load distributions,
etc.) remain. Suppose i, is the minimum request arriving rate
that leads to the occurrence of timeouts. Then, we could use rpip
to divide applicable cases of our model from inapplicable cases
(our model is applicable when r < ry;,). Hence, we measure the
accuracy of the prediction on model applicability by comparing the
observed and predicted ry,y.

Fig. 9 shows the observed and predicted results on r,;;; with
diverse scenarios and SLAs when Pypes = 0.1%, 0.5%, and 1.0%. Fig. 9
reports both the mean and variance of rp,;,. On average, the relative
error of the prediction is about 0.4% when Pys = 0.1%, about 2.0%
when Py,s = 0.5%, and about 3.9% when Pyes = 1.0%. The average
prediction error grows along with the Py.s due to the decreased
accuracy of our model with more timeouts.

7. Related work
7.1. Queueing network

General queue networks fail to model the cloud object storage
systems due to assuming that successive response times of the

82 Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83

queues in a path through the network are independent, however,
disk operations block the request processing queue at the backend
tier of the cloud object storage system. As a matter of fact, the cloud
object storage system could be modeled by Layered Queueing
Network (LQN), which is an extension to queueing networks. In
LQN, the service time of upper layer queue is given by the response
time of a lower layer queue. However, there is no LQN solver that
calculates the distribution of the response latency for the LQN
using FCFS queueing discipline. The state-of-the-art LQN solvers,
including LQNS [8] and DiffLQN [34], focus on calculating the mean
values like throughput and average response time, and Line [25]
calculates the distribution of the response latency for LQN using PS
discipline. Some LQN solvers support estimating response latency
distribution with simulation, which is high time consumption.

7.2. Multi-tiered application performance modeling

Modeling multi-tiered web application has been studied ex-
tensively. The initial attempts, including Villela et al. [33] and
Ranjan et al. [26], use bottleneck tier to build models. Yaksha [14]
models an entire e-commerce application as M/GI/1/PS queue.
These models generally assume that the applications are compu-
tation intensive, which makes them fail to catch the performance
characteristics of I/O intensive cloud object storage systems.

On the one hand, different from our model that predicts the
percentage of requests meeting a response latency requirement,
the recent models generally predict the average performance met-
rics (e.g. throughput, average response latency) for a particular
scenario. For instance, Liu et al. [16] and Urgaonkar et al. [31]
use closed queueing networks to model session-based web appli-
cations, Calheiros et al. [4] and Jung et al. [13] rely on queueing
networks for modeling applications running in virtualized envi-
ronments, Ghaith et al. [9] consider the software contention while
modeling 3-tiered web applications using LQN, and Han et al. [11]
build a performance model for latency-critical applications in the
context of sharing resources with offline batch jobs. On the other
hand, Nguyen et al. [20] use the mean value and variance of
latencies to predict tail latency in the high load region. However,
we use important metrics, say workload and cache miss ratio,
to predict the percentage of requests meeting a response latency
requirement.

7.3. Storage system performance modeling

The focuses of modeling different types of storage systems
are different. Wu et al. [38] propose a general guideline of
constructing LQN for modeling the interaction of different com-
ponents in the distributed file system (e.g. HDFS). For parallel
storage systems (e.g. Lustre, PVFS) and RAID (redundant array of
independent disks), performance models [15,32] generally exploit
fork-join queue for modeling data striping, where an IO request is
split into several sub-requests of different storage devices. These
models fail to deal with the cloud object storage system because
they assume no more than one disk access per request at storage
servers and overlook the waiting time of being accept()-ed, and
our model addresses these issues. Yanggratoke et al. [39] build a
performance model to predict the distribution of the response la-
tency for the Spotify backend (the Spotify backend works as a cache
tier of Amazon S3), and the difference between their model and
our model is that their model introduces a workload-dependent
parameter g, which is the probability that an arriving request can
be served from memory and not blocked by requests served from
disks. They use benchmarking to obtain the relationship between
requests arriving rate and q for each individual backend server. Al-
though our model needs benchmarking to get device performance
properties (detailed in Section 4), the crucial difference is that the
device performance properties are independent of the workload.

8. Conclusion

In this paper, we present an analytic-based performance model
that predicts the percentage of requests meeting an SLA for the
cloud object storage system using event-driven programming
model. Moreover, we also provide a method that predicts the
applicability of our model. Our model addresses the complexity of
diverse disk operations being scheduled in an interleaving manner
at storage servers. Our model also quantifies the impact of the
waiting time for being accept()-ed on the response latency of the
system. We comprehensively consider different types of timeouts
that invalidate our model and determine the applicability of our
model by predicting the occurrence of timeouts. We validate our
model by replaying a real-world trace against an OpenStack Swift
cluster. Our experiments demonstrated that our model faithfully
captures the performance of the cloud object storage system,
and the prediction results on the applicability of our model are
also accurate. Moreover, the implementation is available as open-
source software from https://github.com/ysu-hust/cosmodel.

Acknowledgments

This work was supported by the National High Technology
Research and Development Program (863 Program), China No.
2015AA015301, the National Key Research and Development Pro-
gram of China under Grant 2016YFB1000202; NSFC, China No.
61472153,No.61502191; State Key Laboratory of Computer Archi-
tecture, China, No. CARCH201505; This work was also supported by
Engineering Research Center of data storage systems and Technol-
ogy, Ministry of Education, China.

References

[1] Amazon s3, https://aws.amazon.com/s3/, 2016-10-19.

[2] D. Beaver, S. Kumar, H.C. Li,]. Sobel, P. Vajgel, Finding a needle in haystack:

Facebook’s photo storage, in: Proceedings of the 9th USENIX Conference on

Operating Systems Design and Implementation, in: OSDI'10, USENIX Associ-

ation, Berkeley, CA, USA, 2010, pp. 1-8.

T. Brecht, D. Pariag, L. Gammo, Acceptable strategies for improving web server

performance, in: Proceedings of the Annual Conference on USENIX Annual

Technical Conference, in: ATEC '04, USENIX Association, Berkeley, CA, USA,

2004, pp. 20-20.

R.N. Calheiros, R. Ranjan, R. Buyya, Virtual machine provisioning based on

analytical performance and qos in cloud computing environments, in: 2011

International Conference on Parallel Processing, 2011, pp. 295-304, http:

//dx.doi.org/10.1109/ICPP.2011.17.

[5] Ceph use cases, http://ceph.com/users/, 2016-10-19.

[6] G.DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, W. Vogels, Dynamo: Amazon’s highly avail-

able key-value store, in: Proceedings of Twenty-First ACM SIGOPS Sympo-

sium on Operating Systems Principles, in: SOSP’07, ACM, New York, NY, USA,

2007, pp. 205-220, http://dx.doi.org/10.1145/1294261.1294281.

Q. Fan, Q. Wang, Performance comparison of web servers with different

architectures: A case study using high concurrency workload, in: 2015 Third

IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb),

2015, pp. 37-42, http://dx.doi.org/10.1109/HotWeb.2015.11.

G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi, Enhanced modeling

and solution of layered queueing networks, IEEE Trans. Softw. Eng. 35 (2)

(2009) 148-161, http://dx.doi.org/10.1109/TSE.2008.74.

S. Ghaith, M. Wang, P. Perry, L. Murphy, Software contention aware queue-

ing network model of three-tier web systems, in: Proceedings of the 5th

ACM/SPEC International Conference on Performance Engineering, in: ICPE

"14, ACM, New York, NY, USA, 2014, pp. 273-276, http://dx.doi.org/10.1145/

2568088.2576760.

[10] M. Hall, Combinatorial Theory, John Wiley & Sons, 1998.

[11] R.Han,]J. Wang, S. Huang, C. Shao, S. Zhan,]. Zhan,].L. Vazquez-Poletti, Pcs:
Predictive component-level scheduling for reducing tail latency in cloud on-
line services, in: 2015 44th International Conference one Parallel Processing,
2015, pp. 490-499, http://dx.doi.org/10.1109/ICPP.2015.58.

[12] Q.Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, H.C. Li, An analysis of
facebook photo caching, in: Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, in: SOSP '13, ACM, New York, NY, USA,
2013, pp. 167-181, http://dx.doi.org/10.1145/2517349.2522722.

3

[4

(7

8

[9

https://github.com/ysu-hust/cosmodel
https://aws.amazon.com/s3/
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb3
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb3
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb3
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb3
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb3
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb3
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb3
http://dx.doi.org/10.1109/ICPP.2011.17
http://dx.doi.org/10.1109/ICPP.2011.17
http://dx.doi.org/10.1109/ICPP.2011.17
http://ceph.com/users/
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1109/HotWeb.2015.11
http://dx.doi.org/10.1109/TSE.2008.74
http://dx.doi.org/10.1145/2568088.2576760
http://dx.doi.org/10.1145/2568088.2576760
http://dx.doi.org/10.1145/2568088.2576760
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb10
http://dx.doi.org/10.1109/ICPP.2015.58
http://dx.doi.org/10.1145/2517349.2522722

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]
(28]
[29]
(30]

(31]

(32]

[33]

[34]

Y. Su, D. Feng, Y. Hua et al. / Journal of Parallel and Distributed Computing 128 (2019) 71-83 83

G.Jung, K.R. Joshi, M.A. Hiltunen, R.D. Schlichting, C. Pu, Generating adaptation
policies for multi-tier applications in consolidated server environments, in:
International Conference on Autonomic Computing, 2008. ICAC '08, 2008, pp.
23-32, http://dx.doi.org/10.1109/ICAC.2008.21.

A. Kamra, V. Misra, E.M. Nahum, Yaksha: A self-tuning controller for man-
aging the performance of 3-tiered Web sites, in: Twelfth IEEE International
Workshop on Quality of Service, 2004. IWQOS 2004, 2004, pp. 47-56, http:
//dx.doi.org/10.1109/IWQ0S.2004.1309356.

AS. Lebrecht, N.J. Dingle, W.J. Knottenbelt, Analytical and simulation mod-
elling of zoned RAID systems, Comput. J. (2010) bxq053, http://dx.doi.org/10.
1093/comjnl/bxq053.

X. Liu, J. Heo, L. Sha, Modeling 3-tiered Web applications, in: 13th IEEE
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, 2005, pp. 307-310, http://dx.doi.org/10.
1109/MASCOTS.2005.40.

D. Meisner, C.M. Sadler, LA. Barroso, W.-D. Weber, T.F. Wenisch, Power
management of online data-intensive services, in: Proceedings of the 38th
Annual International Symposium on Computer Architecture, in: ISCA '11,
ACM, New York, NY, USA, 2011, pp. 319-330, http://dx.doi.org/10.1145/
2000064.2000103.

S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar, V.
Sivakumar, L. Tang, S. Kumar, F4: Facebook’s warm BLOB storage system, in:
11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), USENIX Association, Broomfield, CO, 2014, pp. 383-398.

D.S. Myers, M.K. Vernon, Estimating queue length distributions for queues
with random arrivals, SIGMETRICS Perform. Eval. Rev. 40 (3) (2012) 77-79,
http://dx.doi.org/10.1145/2425248.2425268.

M. Nguyen, Z. Li, F. Duan, H. Che, H. Jiang, The tail at scale: how to predict it?
in: 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16),
USENIX Association, Denver, CO, 2016.

S.A. Noghabi, S. Subramanian, P. Narayanan, S. Narayanan, G. Holla, M. Zadeh,
T. Li, I. Gupta, R.H. Campbell, Ambry: LinkedIn’s scalable geo-distributed
object store, in: Proceedings of the 2016 International Conference on Manage-
ment of Data, in: SIGMOD ’16, ACM, New York, NY, USA, 2016, pp. 253-265,
http://dx.doi.org/10.1145/2882903.2903738.

Openstack swift, https://docs.openstack.org/developer/swift/, 2016-10-19.
Openstack swift and many small files, http://engineering.spilgames.com/
openstack-swift-lots-small-files/, 2016-10-19.

Openstack swift use cases, https://www.swiftstack.com/customers, 2016-10-
19.

J.F. Pérez, G. Casale, Assessing SLA compliance from palladio component
models, in: 2013 15th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), 2013, pp. 409-416, http://dx.
doi.org/10.1109/SYNASC.2013.60.

S. Ranjan, J. Rolia, H. Fu, E. Knightly, QoS-driven server migration for Internet
data centers, in: Tenth IEEE International Workshop on Quality of Service,
2002, 2002, pp. 3-12, http://dx.doi.org/10.1109/IWQ0S.2002.1006569.

Swift eqiad cluster report, https://ganglia.wikimedia.org/latest/?r=week&cs=
&ce=&c=Swift+eqiad, 2016-10-19.

Swiftstack benchmark suite (ssbench), https://github.com/swiftstack/
ssbench, 2016-10-19.

J. Sztrik, Basic Queueing Theory, Vol. 193, University of Debrecen, Faculty of
Informatics, 2012.

G. Urdaneta, G. Pierre, M. van Steen, Wikipedia workload analysis for decen-
tralized hosting, Elsevier Comput. Netw. 53 (11) (2009) 1830-1845.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, A. Tantawi, An analytical
model for multi-tier internet services and its applications, in: Proceedings
of the 2005 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, in: SIGMETRICS '05, ACM, New York, NY, USA,
2005, pp. 291-302, http://dx.doi.org/10.1145/1064212.1064252.

E. Varki, Response time analysis of parallel computer and storage systems,
IEEE Trans. Parallel Distrib. Syst. 12 (11) (2001) 1146-1161, http://dx.doi.org/
10.1109/71.969125.

D. Villela, P. Pradhan, D. Rubenstein, Provisioning servers in the application
tier for e-commerce systems, ACM Trans. Internet Technol. 7 (1) (2007) http:
//dx.doi.org/10.1145/1189740.1189747.

T. Waizmann, M. Tribastone, DiffLQN: Differential equation analysis of lay-
ered queuing networks, in: Companion Publication for ACM/SPEC on Interna-
tional Conference on Performance Engineering, in: ICPE 16 Companion, ACM,
New York, NY, USA, 2016, pp. 63-68, http://dx.doi.org/10.1145/2859889.
2859896.

[35] BJ. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, Z. Wang, Probabilistic
performance modeling of virtualized resource allocation, in: Proceedings of
the 7th International Conference on Autonomic Computing, in: ICAC’10, ACM,
New York, NY, USA, 2010, pp. 99-108, http://dx.doi.org/10.1145/1809049.
1809067.

[36] Wikipedia openstack swift cluster live status, https://grafana.wikimedia.org/
dashboard/file/swift.json?var-DC=eqiad, 2016-10-19.

[37] RW. Wolff, Poisson arrivals see time averages, Oper. Res. 30 (2) (1982)
223-231.

[38] Y. Wu, F. Ye, K. Chen, W. Zheng, Modeling of distributed file systems for
practical performance analysis, IEEE Trans. Parallel Distrib. Syst. 25 (1) (2014)
156-166, http://dx.doi.org/10.1109/TPDS.2013.19.

[39] R.Yanggratoke, G. Kreitz, M. Goldmann, R. Stadler, Predicting response times
for the Spotify backend, in: 2012 8th International Conference on Network
and Service Management (Cnsm) and 2012 Workshop on Systems Virtualiz-
tion Management (Svm), 2012, pp. 117-125.

Yi Su received the B.S. degree in Computer Science
from the Huazhong University of Science and Technology
(HUST), China, in 2012. He is currently a Ph.D. candidate
of the Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology. His re-
search interests include cloud storage systems, big data
processing systems.

Dan Feng received the BE, ME, and Ph.D. degrees in
Computer Science and Technology in 1991, 1994, and
1997, respectively, from Huazhong University of Science
and Technology (HUST), China. She is a professor and the
dean of the School of Computer Science and Technology,
HUST. Her research interests include computer architec-
ture, massive storage systems, and parallel file systems.
She has more than 100 publications in major journals and
international conferences, including IEEETC, IEEETPDS,
ACM-TOS, FAST, USENIX ATC, ICDCS, HPDC, SC, ICS, IPDPS,
and ICPP. She has served as the program committees of
multiple international conferences, including SC 2011, 2013 and MSST 2012, 2015.
She is a member of IEEE and a member of ACM.

Yu Hua received the BE and Ph.D. degrees in computer
science from the Wuhan University, China, in 2001 and
2005, respectively. He is a full professor at the Huazhong
University of Science and Technology, China. His research
interests include computer architecture, cloud comput-
ing, and network storage. He has more than 100 pa-
pers to his credit in major journals and international
conferences including IEEE Transactions on Computers
(TC), IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS), USENIX ATC, USENIX FAST, INFOCOM, SC
and ICDCS. He has been on the program committees of
multiple international conferences, including USENIX ATC, RTSS, INFOCOM, ICDCS,
MSST, ICNP and IPDPS. He is a senior member of the IEEE, ACM and CCF, and a
member of USENIX.

Zhan Shi received his B.S. degree and Master degree in
Computer Science, and Ph.D. degree in Computer Engi-
neering from Huazhong University of Science and Tech-
nology (HUST, China). He is working at the Huazhong
University of Science and Technology (HUST) in China,
and is an Associate Researcher in Wuhan National Lab-
oratory for Optoelectronics. His research interests in-
clude storage management, distributed storage system
and cloud storage.

http://dx.doi.org/10.1109/ICAC.2008.21
http://dx.doi.org/10.1109/IWQOS.2004.1309356
http://dx.doi.org/10.1109/IWQOS.2004.1309356
http://dx.doi.org/10.1109/IWQOS.2004.1309356
http://dx.doi.org/10.1093/comjnl/bxq053
http://dx.doi.org/10.1093/comjnl/bxq053
http://dx.doi.org/10.1093/comjnl/bxq053
http://dx.doi.org/10.1109/MASCOTS.2005.40
http://dx.doi.org/10.1109/MASCOTS.2005.40
http://dx.doi.org/10.1109/MASCOTS.2005.40
http://dx.doi.org/10.1145/2000064.2000103
http://dx.doi.org/10.1145/2000064.2000103
http://dx.doi.org/10.1145/2000064.2000103
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb18
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb18
http://dx.doi.org/10.1145/2425248.2425268
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb20
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb20
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb20
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb20
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb20
http://dx.doi.org/10.1145/2882903.2903738
https://docs.openstack.org/developer/swift/
http://engineering.spilgames.com/openstack-swift-lots-small-files/
http://engineering.spilgames.com/openstack-swift-lots-small-files/
http://engineering.spilgames.com/openstack-swift-lots-small-files/
https://www.swiftstack.com/customers
http://dx.doi.org/10.1109/SYNASC.2013.60
http://dx.doi.org/10.1109/SYNASC.2013.60
http://dx.doi.org/10.1109/SYNASC.2013.60
http://dx.doi.org/10.1109/IWQoS.2002.1006569
https://ganglia.wikimedia.org/latest/?r=week&cs=&ce=&c=Swift+eqiad
https://ganglia.wikimedia.org/latest/?r=week&cs=&ce=&c=Swift+eqiad
https://ganglia.wikimedia.org/latest/?r=week&cs=&ce=&c=Swift+eqiad
https://github.com/swiftstack/ssbench
https://github.com/swiftstack/ssbench
https://github.com/swiftstack/ssbench
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb29
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb29
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb29
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb30
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb30
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb30
http://dx.doi.org/10.1145/1064212.1064252
http://dx.doi.org/10.1109/71.969125
http://dx.doi.org/10.1109/71.969125
http://dx.doi.org/10.1109/71.969125
http://dx.doi.org/10.1145/1189740.1189747
http://dx.doi.org/10.1145/1189740.1189747
http://dx.doi.org/10.1145/1189740.1189747
http://dx.doi.org/10.1145/2859889.2859896
http://dx.doi.org/10.1145/2859889.2859896
http://dx.doi.org/10.1145/2859889.2859896
http://dx.doi.org/10.1145/1809049.1809067
http://dx.doi.org/10.1145/1809049.1809067
http://dx.doi.org/10.1145/1809049.1809067
https://grafana.wikimedia.org/dashboard/file/swift.json?var-DC=eqiad
https://grafana.wikimedia.org/dashboard/file/swift.json?var-DC=eqiad
https://grafana.wikimedia.org/dashboard/file/swift.json?var-DC=eqiad
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb37
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb37
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb37
http://dx.doi.org/10.1109/TPDS.2013.19
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb39
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb39
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb39
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb39
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb39
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb39
http://refhub.elsevier.com/S0743-7315(18)30117-5/sb39

	Understanding the latency distribution of cloud object storage systems
	Introduction
	Background
	Cloud object storage system modeling
	Assumptions for modeling
	Performance modeling at backend tier
	Performance modeling at frontend tier
	System modeling

	Estimating the model parameters
	Device performance properties
	System online metrics

	Applicability of the model
	Evaluation
	Experimental setup
	The accuracy of the model
	The contribution of core components
	The accuracy of prediction on model applicability

	Related work
	Queueing network
	Multi-tiered application performance modeling
	Storage system performance modeling

	Conclusion
	Acknowledgments
	References

