Future Generation Computer Systems 71 (2017) 32-42

Contents lists available at ScienceDirect 4
FiGICIS!
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs e

Partitioning dynamic graph asynchronously with distributed FENNEL @CmssMark

Zhan Shi?, Junhao Li**, Pengfei Guo b1 Shuangshuang Li¢, Dan Feng®*, Yi Su?

@ Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

b gingting.fm, Inc., Shanghai, China

HIGHLIGHTS

e Streaming graph partitioning is hard to scale because of its sequential natural.
e An asynchronous streaming graph partitioning model is proposed to improve throughput.
o Network utilization can be maximized by proposed tree-shaped map-reduce network.

ARTICLE INFO

Article history:

Received 5 July 2016

Received in revised form

31 October 2016

Accepted 7 January 2017
Available online 14 January 2017

ABSTRACT

Keywords:

Graph partitioning

Streaming

FENNEL

Asynchronous

Tree-shaped map-reduce network

Graph partitioning is important in distributed graph processing. Classical method such as METIS works
well on relatively small graphs, but hard to scale for huge, dynamic graphs. Streaming graph partitioning
algorithms overcome this issue by processing those graphs as streams. Among these algorithms, FENNEL
achieves better edge cut ratio, even close to METIS, but consumes less memory and is significantly faster.
On the other hand, graph partitioning may also benefit from distributed graph processing. However, to
deploy FENNEL on a cluster, it is important to avoid quality loss and keep efficiency high. The direct
implementation of this idea yields a synchronous model and a star-shaped network, which limits both
scalability and efficiency. Targeting these two problems, we propose an asynchronous model, combined
with a dedicated tree-shaped map-reduce network which is prevail in systems such as Apache Hadoop
and Spark, to form AsyncFENNEL (asynchronous FENNEL). We theoretically prove that, the impact on
partition quality brought by asynchronous model can be kept as minimal. We test AsyncFENNEL with
various synthetic and real-world graphs, the comparison between synchronous and asynchronous models
shows that, for streamed natural graphs, AsyncFENNEL can improve performance significantly (above
300% with 8 workers/partitions) with negligible loss on edge cut ratio. However, more worker nodes will
introduce a heavier network traffic and reduce efficiency. The proposed tree-shaped map-reduce network
can mitigate that impact and increase the performance in that case.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

indexed Web contains at least 4 billion interlinked pages [6]. On
Facebook, there are over 1.65 billion monthly active users which

At present, graph processing is applied in many fields, for exam-
ple, in social networks, graph processing can either be used for se-
curity analysis [1] or finding trending topics [2], and in traditional
fields such as SSSP (Single Source Shortest Paths) and paper cita-
tions, social network analysis [3], data mining [4], protein interac-
tions [5]. The ever growing complexity and scale of various graphs
are now posing a big challenge to graph processing. Currently, the

* Corresponding authors.
E-mail addresses: zshi@hust.edu.cn (Z. Shi), allenlee@hust.edu.cn (J. Li),
1010382609@qq.com (P. Guo), doublelee@hust.edu.cn (S. Li), dfeng@hust.edu.cn
(D. Feng), suyi@hust.edu.cn (Y. Su).

1 Work done while at Huazhong University of Science and Technology.

http://dx.doi.org/10.1016/j.future.2017.01.014
0167-739X/© 2017 Elsevier B.V. All rights reserved.

is a 15% increase year over year [7]. Besides, every 60 s, among
those friend links, 510 comments are posted, 293,000 statuses are
updated, and 136,000 photos are uploaded [8]. Such an unprece-
dented data deluge brings us not only new opportunities and ben-
efits, but also challenges in computing infrastructure.

Most graph computing tasks, such as Community Detec-
tion [9], Connected Components [10], Triangle Counting [11],
PageRank [12], Shortest Path [13] and Graph Diameter [14], pro-
cess graph data iteratively, which makes those tasks formidable
to any stand-alone machine when the graph is very large. A tra-
ditional method for dealing with this problem is to divide the large
graph into several smaller subgraphs, then processing it using a
distributed system. These subgraphs must be balanced, so it can
take advantage of parallel computing to accelerate processing.

http://dx.doi.org/10.1016/j.future.2017.01.014
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.01.014&domain=pdf
mailto:zshi@hust.edu.cn
mailto:allenlee@hust.edu.cn
mailto:1010382609@qq.com
mailto:doublelee@hust.edu.cn
mailto:dfeng@hust.edu.cn
mailto:suyi@hust.edu.cn
http://dx.doi.org/10.1016/j.future.2017.01.014

Z. Shi et al. / Future Generation Computer Systems 71 (2017) 32-42 33

Although a good partition is important for processing graph
efficiently, it is also hard to attain. Classical definition of balanced
partition problem is to partition a graph in a way that all partitions
have roughly the same vertex set size, and minimizes the edges
whose two endpoints are in different partitions (cut edges). This
problem was proved to be NP hard [15,16]. For years, there are
many approximative algorithms been proposed and we will briefly
introduce those algorithms next.

Modern distributed graph processing platforms such as MapRe-
duce [17], Pregel [18], PEGASUS [10] and GraphLab [19] by default
use hash partition to randomly partition the graph. This strategy
is easy to implement, and can make the vertices of the subgraphs
well-balanced, but the edge cut ratio goes up to 1 — 1/k (k is the
number of partitions). In these systems, graph processing has to
exchange messages between different partitions along the inter-
partition edges. Those messages will travel through the network,
which could be very costly if edge cut ratio is high.

Another major challenge for large-scale graph partitioning is
how to handle dynamic graph data. The 60 s statistics of Facebook
mentioned previously reveals a classical scenario of modern appli-
cations, the underlying graph is changing constantly and rapidly,
and many real-world graphs share the same feature. Therefore, the
processing on these graphs should be fast enough to catch up the
change. Stream processing provides a viable solution to this prob-
lem. Combining with the idea of stream processing, graph parti-
tioning becomes streaming graph partitioning, every arrived ver-
tex needs to be immediately determined which partition it belongs
to.

Given that the goal of large-scale graph partitioning is to gener-
ate better partition faster, with limited resources, we aim to use our
distributed system to accelerate the graph partition. It is because
a single machine has limited resources such as CPUs and memory,
so it is necessary for us to use a distributed system.

The remainder of this paper is organized as follows. Section 2
provides a short study on graph partitioning and recent advances
on streaming graph partitioning. In Section 3, we present our
method and our analysis of partition quality and performance. The
experiments results are presented in Section 4. Section 5 contains
general conclusions and directions for future work.

2. Related work

For years, many researchers have proposed various graph
partitioning methods. Spectral method [20,21] converts the graph
into a matrix, then use eigenvectors to partition it, however
this requires massive computation. Geometric method [22-24]
partitions the graph based on geometric characteristics, but suffers
a high edge cut ratio. Kernighan-Lin (KL) algorithm [25] starts
from a vertex and add its neighbour level by level to the partition
until the added vertices reach the half of the whole vertices,
and its improved method FM (Fiduccia-Mattheyses) [26] provides
an efficient solution to the problem of separating a network of
vertices into 2 separate partitions in an effort to minimize the
number of nets which contain vertices in each partition. Based on
classical algorithms, modern libraries such as METIS [27] adopts
a multilevel approach. The main idea is to iteratively coarsen
the initial graph by merging vertices, then uncoarsen the graph
iteratively with local improvement algorithms such as the KL and
FM applied at each level. A multilevel KL-based algorithm [28] is
presented as a fast partitioner which allows realtime deployment
calculations. Above algorithms are designed for static graphs.

At present, the most common dynamic graph partitioning
algorithms are hash algorithm, deterministic greedy algorithm,
minimum non-neighbour algorithm. Compared to static graph
partitioning algorithms, these graph partitioning algorithms use
less computation and do not need the whole information of a graph

to determine the partition that every incoming vertex belongs,
so the partition would be faster, but the edge cut ratio is higher
than the static graph partitioning algorithms. Recently, streaming
graph partitioning algorithms [29-32] are proposed to handle
massive graphs as data streams. Balanced edge partition [33] has
emerged as a new approach to partition an input graph data for the
purpose of scaling out parallel computations, which is of interest
for several modern data analytic computation platforms, including
platforms for iterative computations, machine learning problems,
and graph databases. Furthermore, JA-BE-JA [34] is proposed
to run partitioning in a distributed graph-processing system,
and achieves high parallelism. PAGE [35] is a partition aware
engine for parallel graph computation that equips a new message
processor and a dynamic concurrency control model. Leopard [36],
cooperates with FENNEL, achieves vertex reassignment and
replication, can partition dynamic graphs heuristically.

FENNEL [37] was proposed to partition large-scale streaming
graph with less computational complexity, which is O (log(k)/k),
where kis the number of partitions or hosts. FENNEL is significantly
faster than METIS, and its edge cut ratio is close to METIS. Although
modern graph processing systems usually adopt parallel architec-
ture such as map-reduce to handle big graphs [38], to use FENNEL
in the same way is not easy. As a stream partitioner, FENNEL pro-
cesses incoming vertices as one stream, simply running multiple
processes or threads is not enough for improving parallelism. Fur-
thermore, while doing greedy vertex assignment, every partition
will calculates the cost if the vertex is assigned to this partition,
the central machine node will compare the costs of every parti-
tion altogether. This structure of the system will be a star-shaped
network, with a central node for making decisions, as for network,
aggregated data transfer network flow will become a limitation.

3. Distributed partitioning

As we have mentioned in Section 2, among streaming graph
partitioning algorithms, FENNEL has a better edge cut ratio, even
catches up METIS in many cases. But to deploy in a distributed
system, for scaling performance, we need to handle the problems
from processing and transferring.

3.1. Processing model of FENNEL

In adistributed system, by assigning one partition to one worker
node, we get a direct implementation of FENNEL processing model.
For every newly arrived vertex v, a proxy node will broadcast the
vertex’s data, including its neighbour list to all K worker nodes.
The workers will cache that data firstly, and use a greedy vertex
assignment algorithm to calculate the gradient 6g (v, S;) = [N(v)N
S| — a((|S| + 1)¥ — |S|¥), which gives the outcome if vertex v is
allocated to this worker (partition), then return the value to proxy.
After proxy have gathered all the returned values g (v, S), it will
choose §maxg (v, S;), and broadcast the decided optimal partition i
back to K workers. Then, for every worker, it will check whether
it holds the optimal partition i or not. If yes, the worker takes
corresponding vertex data from cache and puts in local storage.
Otherwise, the worker removes corresponding vertex data from
cache and puts a key-value pair (v, i) into local table for future
reference.

But there are two major problems in the processing of above
FENNEL model:

1. Low network efficiency caused by synchronous processing.
Obviously, for every worker, the process is comprised of three
phases: receiving vertex, calculating gradient and sending
gradient back, which are completely synchronous. Then, the

34 Z. Shi et al. / Future Generation Computer Systems 71 (2017) 32-42

Optimal partition information

:I:H:ﬁ Greedy gradient information

m Vertex information

node

WA

%%

Fig. 1. Asynchronous vertex data processing model.

processing time for an incoming vertex is

T =T 4T, 4T,
= 1%RIT+T, + T,

= 1%RIT 4+ T, + (T, + T,)/B. (1)

T; is time for sending a vertex’ adjacency list, T, is for gradient
calculation, T, is for gathering gradient values, T; is for data
transmission, B is network bandwidth, RTT is round-trip time.
In a generic 1 Gbps Ethernet, RTT is around 0.15 ms. The Twitter
social network graph dataset from Stanford SNAP(Stanford
Network Analysis Project) [39] has an average edge-vertex ratio
of around 30, a few vertices have 100-200 edges connected,
which is pretty high among those real-world graphs published
on SNAP. We set the size of a vertex adjacency list to the
maximum possible value in Twitter dataset: 200, which is 800
bytes (4 bytes per vertex ID), gradient value type is Double (8
bytes), network bandwidth is 1 Gbps, so ideal data transmission
time is roughly 0.0065 ms, which is much smaller than RTT.
Besides, sparser graphs will have a lower edge-vertex ratio,
making worker calculation time even shorter. So, for most real-
world graphs, most vertex adjacency lists are relatively small,
while processing one vertex a time, the network will usually be
idle, total process time per vertex is about T = 1*RTT, which is
dominated by RTT. This process follows algorithm logic strictly,
but it is inefficient.

2. Limited scalability in star-shaped network topology. Before gra-
dient calculation, the proxy sends a vertex and its neighbour list
to K worker nodes, so K copies are spread over the network.
When the network is not saturated, it does not matter. How-
ever, as K increases, all these K copies combined could easily
generate a network traffic that reach or exceed the maximum
bandwidth of proxy node in the centre, affecting performance.
The bandwidth of a single connection between the proxy node
and a worker node is:

. datasize per 8T
Bandwidth

RTT per second
800 bytes
" (15/0.05 ms)

= 5.333 MB. (2)

For example, in an ideal 1 Gbps Ethernet, if edge-vertex ratio of
input graphis n = 200, the original model of FENNEL will reach
the maximum bandwidth when there are more than 23 worker
nodes. Considering other factors such as protocol overhead, the
maximum allowed workers would be fewer.

3.2. Asynchronous model

In this subsection, we will introduce our asynchronous model,
improve its performance, and analyse the potential cost on parti-
tion quality. Our asynchronous data processing model for FENNEL
is shown in Fig. 1. In this model, proxy will send vertices with their
adjacency lists to all workers continuously, without waiting for the
return of their gradients. Considering a concurrency of N, on the
worker side, the gradients of no more than N vertices can be cal-
culated and sent back to proxy simultaneously.

We name the original processing model as synchronous model
and the our improved model as asynchronous model. In Fig. 2,
@ stands for the stream of vertex adjacency lists sent from proxy,
@ represents greedy gradients returned by workers. ® is the de-
cided partition for each vertex, and it is sent from proxy to workers
as adata stream too. Every worker has a cache, which holds vertices
that just completed greedy calculation and result transfer, wait-
ing for corresponding partition decision. Among those data been
transferred, apparently the vertex adjacency list @ is the biggest,
greedy gradient and vertex partition decision are comparatively
much smaller. Therefore, vertex adjacency list transmission is the
bottleneck of the entire pipeline. So if vertex adjacency lists fill up
the network, the system will meet its highest throughput, and been
fully utilized. As shown in Fig. 2, assuming that 50 vertex adjacency
lists will saturate the network, the required concurrency (the total
of vertices that entered the system) will be the sum of the number
of packets (one for each vertex) in ® and @.

Therefore, to maximize network efficiency, the concurrency is
determined by the total of vertex data packets that fill up the
network and greedy gradient data packets of vertices that entered
previously, which is:

B
Nmax = RTT * <. 3)

B is network bandwidth, S is the size of vertex data packet.
Actual vertex data packet size is usually not the same, so this value
is ideal. In a star-shaped network, K workers consume K copies of
vertex data, so for each worker, the actual bandwidth utilization is
B/k, and the asynchronous should be

B
Nstar-max = RTT * E/S (4)
For example, if n = 50, which means the average number

of edges connected to each vertex is 50, in 1 Gbps Ethernet with

Fig. 2. Asynchronous model of fully-loaded network (50 packets).

Z. Shi et al. / Future Generation Computer Systems 71 (2017) 32-42 35

RTT = 0.15 ms and one worker, data transmission delay is T, =
0.075 ms, the concurrency is

B 0.15ms *x 1 Gbps
Nmax:(Th'f'Th)** e

=93.75 5
S 200 bytes ()

and for K workers, the concurrency is N(k)max = 93.75/k, since
this reaches the network bandwidth limit, higher concurrency will
not benefit the efficiency. On the other hand, if the concurrency N
is set within [1, N(k)max], it will increase the system efficiency N
times theoretically.

The basic model of FENNEL can be described as a concurrency
of 1 or a little bigger, and the increased concurrency means ver-
tex viy1 can enter the system and been broadcasted to all work-
ers before the processing of vertex v; completed. Although this
improves partitioning performance, partition quality, on the other
hand, needs to be investigated. Next we will analyse the impact on
8g(vit1, S) when this system processes i and i 4+ 1 simultaneously.
We take the classical graph500 dataset generated by Kronecker
Generator (scale factor 20, which means 2%° vertices) as an exam-
ple, this graph has about 1 million vertices and about 44.6 million
edges, the edge-vertex ratio is slightly smaller than 50. While run-
ning greedy vertex assignment algorithm mentioned in Section 3.1,
if the number of workers is k, then

! 3 3
3g (Viy1,S) = IN(vip1) N S| — Tl\/g((|5| + 1)z —[S]2). (6)

For a worker, S denotes the vertex set, and its size is |S]|,
above calculation should be done before assigning vertex v; to any
partition.

1. If we use synchronous model, then for vertex v;, the gradient
value is 8gs(vit1, S") = 8g(vir1, S") In which S’ is the vertex set
of local partition after vertex v; is assigned.

2. Ifthe concurrency is set to 2, then for vertex v;, its gradient value
is 6gp(viy1,S) = 6g(vit1. S) The difference with synchronous

model is A = 8g,(vit1,S) — 88s(viy1,S’), assuming that
asynchronously processing errors ratio is p, defined as
= @)
pP=
8gs(viy1,S")

o If vertex v; is allocated to partition S, its average probability
is 1/k, difference value is

Ay = [(N(vig1) N {vid)]

k 3 3 3
-l-77\/;((|5|-|-2)2+|5|2 = 2(IS| + 1)2). (8)

In which the first part |N (viy1)N{v;}| indicates if vertex v; and
vertex v;; 1 are neighbours, then the value is 1, otherwise, the
value is 0. The second part /k/n((|S|+2)%/2+|S|>/2—2(|S|+
1)3/2) begins with (232 —2) x50%/k/(22°) ~ 0.828x+/k/20
when |S| = 0. With |S]| increasing, it is always greater than
0 and keeps decreasing. When |S| — 400, it converges to

0. Particularly when |S| = 100, the value of second part is
0.0746 * ﬁ/ZO. In this case, asynchronous processing error
ratio is
= (©)
p=———"r.
3gs(viy1, S')

When vertices arrive randomly, the probability of vertex
v; and vertex v, are neighbours is n/n, for the graph500
dataset used here, = 50, n = 1000000, the error ratio
is

1.1

3 3.7
IN(iz1) NS’ = 5 (ST + 12 = [5']2)

n < (10)

The expectation of error ratio is
1 7
Epsn = — % —*p
k n
o

~ 80000

0.00001375
< 3 - 11
IN(wit1) NS'| — 35 ((1S'[+ D2 —[5|2)
If vertex v; and vertex v;; 1 are not neighbours, the probability
is 1 — n/n (vertices arrive randomly), for the same graph500
dataset, the expectation of error ratio is

1 n 1
Epsnn:E*(1_E)*p<Zp

. 0.025((|S|+2)%+|S|%—2(|S|+1)%) (12)
- 3 3.7
INir1) NS — 5 ((S'I+ 12 — |S']2)
When |S| > 100 and
0.001865

INi) NS’ = H 1+ 12 —15']%)

o If the vertex v; is not allocated to local partition S, its average
probability is (k — 1)/k, then the difference is A, = 0, and
the asynchronously processing error ratio is

= (13)
P Se (i, 5

Based on above analysis, we can see that, when |S| > 100, the

expectation of asynchronously processing error ratio is

Ep = E;Osn + E,Osnn +E;O0
0.00187875
< . 3 - (14)
IN(ip1) NS'| = (ST + D2 — [5']2)

Inwhich S’ = S N {v;}, IS’ = |S| + 1.

If vertices arrive randomly, then E(IN(viz1) N S’']) = n(|S| +
1) /n, when balance factor v = 1.1and k = 4, |S|max = n* v/k =
275000. While |S| € [100,275000], from Eq. (14), we obtain
E(|[Ep|) < 0.000512%.

We can conclude that, when the vertices arrive randomly at
the asynchronous of 2, the partitioning quality will almost be
unaffected.

Epm =<

3.3. Tree-shaped map-reduce network

Based on previous analysis, we can conclude that, in our
improved model, concurrency is mainly limited by network
bandwidth. Suppose the total of replicated vertex data been
transferred in the network is R, in previous Sections 3.1 and 3.2,
the processing model of FENNEL works as a star-shaped network,
in whichR = K, B, o« N * R, where K is partition amount, and
N is concurrency. Obviously, the bandwidth consumption B, can
be reduced by decreasing N and R, but decreasing N will lower the
concurrency. This problem exists in star-shaped network, a tree-
shaped map-reduce network (Fig. 3) is then proposed here to fix it.

In this model, the tree is an H-ary tree, in which each node has
no more than H children, and proxy is the root. Proxy receives new
vertices with their adjacency lists and sends to its child worker
nodes. Workers will then run FENNEL greedy calculation on those
vertices, and at the same time, forward those vertices to their
respective child worker nodes. In this way, vertex adjacency lists
will eventually be spread over the tree. For every worker, when
calculation is done, the results will be sent back to proxy directly,
since those packets are much smaller. According to gathered
gradient values of every vertex, proxy uses the maximum one
to decide the partition for the vertex, then passes the decided
partition id down along the tree. In this tree-shaped map-reduce
network, the maximum number of copies that the proxy and all

36 Z. Shi et al. / Future Generation Computer Systems 71 (2017) 32-42

I}

Data generate endpoint

— Vertex information

« « « « p Greedy gradient information
—— —)p Optimal partition information

/
N

Proxy server

Worker node

Fig. 3. Tree-shaped map-reduce network.

the forwarding workers send is up to H instead of K. Since H can be
much smaller than K, this will raise the bar on maximum allowed
concurrency. But this model will also increase the RTT, which is
determined by the height of tree, thus may lower the efficiency.

When H = 2 (binary tree), suppose there are K workers, in an
1Gbps ethernet, RTT = 0.15 ms and n = 50, if the network is star-
shaped, transmission delay is T, = 0.075 ms, and the data amount
D = (T + Ty) * B = 18 550 bytes if bandwidth B is saturated, and
single data packet size is S = 200, based on D = S %N %K, we have
N = 93.75/K. Increase the K will decrease the concurrency, when
K = 93, the concurrency will be reduced to 1 or a little bigger,
degraded to synchronous model.

We name the vertex data flow that travelled along all the
branches to every leaf as “download network”. It is obvious that if
the download network to lower level worker nodes is fully utilized,
then the download network of upper level nodes will also be fully
utilized, then the whole system will has the same efficiency with an
ideal star-shaped network (unlimited bandwidth) of the same size.
So we only need to make the download network of lowest level
(leaf) worker fully utilized. In tree-shaped map-reduce network,
the maximum transmission length is Lyp.x = [log, (K + 1), max
time delay from proxy node to work nodes is Tnax = Lmax * Th, SO
we need to increase the concurrency N to fill up the lower level
worker nodes, and the max concurrency is

1
Nmax = (Tmax + Th) * EB/S
= 23.4375 x (|log, (K + 1)]). (15)

If we evaluate the system as a whole, the maximum concur-
rency from proxy to leaf workers is 23.4375 % 2, 23.4375 x
3, ...,23.4375 % (|log, (K + 1)]), and the concurrency of every
node must be the same. In order to maximize the overall band-
width utilization and concurrency, we need to increase the con-
currency of upper nodes, make it aligned with the bottom nodes,
that is, the concurrency of the whole system should be 23.4375 *
(llog, (K + 1)]) to achieve the highest efficiency. In this way, the
upper nodes do not need to wait for the completion of their child
nodes, thus the system efficiency will not be affected by the num-
ber of worker nodes. We name the resulting system AsyncFENNEL
(Asynchronous FENNEL). Moreover, in AsyncFENNEL, we need to
improve overall system concurrency, and may impact on the accu-
racy of FENNEL, which will be covered in tests.

Table 1
Experimental environment.
0s RedHat 5.3 Linux 2.6.18
MEMORY 12GB
DISK 296 GB
NETWORK Full-duplex Gigabit Ethernet
CPU Xeon (r) CPU X5560 @ 2.80 GHz
Table 2
Datasets used in experiments.
Dataset G |V(G)| |[E(G)] AvgDeg DegDist
graph500 ™M 48M 48 Power-law
er20-8 ™M 8SM 8 Poisson
er20-16 ™M 16M 16 Poisson
er20-24 ™M 24M 24 Poisson
patentcite 3.8M 16.5M 44 Power-law
hudong-int. 2M 15M 7.5 Power-law
SOC-pokec 1.6M 30M 18.8 Power-law

4. Evaluation

We use both synthetic graphs and real-world social network
datasets to evaluate AsyncFENNEL, on partition quality, concur-
rency, network efficiency and different topologies.

There are four synthetic datasets, and three of them has
the same type with different parameters. graph500 is a dataset
from graph500 benchmark (2%° vertices, R-MAT parameter: A =
0.57,B = 0.19,C = 0.19,D = 0.05, edge-vertex ratio: 48).
er20-8 is a synthetic Erdos-Renyi graph, and has 2%° vertices with
a edge-vertex ratio of 8, and er20-16 has 22° vertices with a edge-
vertex ratio of 16, er20-24 has 22° vertices with a edge-vertex ratio
of 24.

There are also three real-world dataset. SOC-pokec is a dataset
from SNAP and KONECT [40], this is the friendship network from
the Slovak social network Pokec, nodes are users of Pokec and
directed edges represent friendships, it has 1,632,803 vertices and
30,622,564 edges and a average degree of 37.509. patentcite [41]
is also a dataset from KONECT, it is the patent citation graph, it
has 3,774,768 vertices (patents) and 16,518,947 edges (citations),
vertices-edges ratio is 8.7523. hudong-internallink [42] is the
internal link graph from hudong encyclopedia with 1,984,484
vertices (articles) and 14,869,484 edges (hyperlinks), its vertices-
edges ratio is 14.986. Besides, we also use BFS-sorted graph dataset
to evaluate the impact on partition quality caused by the locality
of input graph stream.

4.1. Asynchronous model test

In this part, we have 2 test cases about the asynchronous model
and original synchronous model. One for performance comparison,
the other for showing the impact on partition quality caused
by increased concurrency. 4 synthetic datasets (graph500, er20-
8, er20-16 and er20-24) and 3 real-world datasets (patentcite,
hudong-internallink and SOC-pokec) with different properties are
used during tests (see Table 2), all real-world datasets are hosted
by Stanford Network Analysis Project (SNAP) and KONECT. Our
experimental environment is listed in Table 1.

Fig. 4 is the asynchronous model tests on synthetic and real-
world datasets, Fig. 4(a)-(d) are tests on synthetic datasets and
Fig. 4(e)-(g) are tests on real-world datasets.

Figure A of each sub figure shows the partitioning speed
while running {2, 4, 6, 8} worker nodes, the concurrency is
set to 100 in asynchronous model, and the concurrency is set
about 20 in synchronous model, partitioning speed is repre-
sented as processed vertex number per second, with a unit of
k/s (Kilo-Vertices/Second), we can see the partitioning speed in

Z. Shi et al. / Future Generation Computer Systems 71 (2017) 32-42 37
A T A B
I 5ynchronous model T synchronous model 14 Inprove Ratio
2] BB asynchronous model & 2 B asynchronous model
]
0]
—) —]
g
< g H g
=] E s
g g i ¢
& g & g
2 4
2
o 0+
: i) § : i é 8
Worker Number Worker Number
C %y D w © D ®q
hog 55 [—A— 2 workers [—=—2 workers 55 [—a—2 workers
gi 1 © [—8— 4 workers o |—e— 4 workers 50 |—e— 4 workers
4 rs |—=— 6 workers |—4— 6 workers. |—®— 6 workers.
284 |—o— rs 45 -— = 7
264 -
|—— 6 workers = $ 404
2 %] S 40 - 8
z 2 o 35 g — 2 35 [
3 -— .
3 2 e 245 s 2 o]
§ g / 3 o oo oo o H 30 3
3 16 . 2 3 25
1] et E 5 — e o
PR g » 0 g
10 15 A, A 15
87 10 10
6] 10
& s s
S N —
T m B 4 % W T & % o Mo T B w b m & B % % 0 T h B % % o @ % % T T H @ B % % B @ % % T
Concurrency Concurrency Concurrency Concurrency
(a) graph500. (b) er20-8.
A I synchronous model B [improve Ratio A I synchronous model B [improve Ratio
8 [asynchronous model
[asynchronous model .

Speed (Ks)

Worker Number

Improve Ratio

2 4 6
Worker Number

Speed (Ks)

2 4 6 8
Worker Number

Improve Ratio

-

2 4 6 8
Worker Number

c® =2 workers D © c e D ®
—e— 4 workers Fa—2 workers
s s e
|—a— 6 workers [-e— 4 workers [Fa—2workers 2 z‘;x::
504 50 | -=— 6 workers ° [~ 4 workers, * |-#— 6 workers
— s |- 6 workers s
g -
w0 S w© P . g
2 —_ T =
@ g q — T 2]
K] [:4 g]
2 = = <
R S B % 5 ¥
3 3
2 S 2 4 S =]
E; —e——o—9 b 2 e '/\/. 2
20 5 204
2 2 3
/_‘/a\A’.\“AA 15 s 15]
104 o 10 a4 10
5 s]
T 2 a0 4 % e 7 & 8 100 10 T 2 @ 4 % e 7 8 % 100 10 0 2 3 4 % 6 70 8 % 100 1o 0 2 30 4 % 6 70 & S 100 1o
Concurrency Concurrency Concurrency Concurrency
(c) er20-16. (d) er20-24.

Fig. 4. Asynchronous tests on three synthetic and real-world datasets.

asynchronous model is significantly faster than the original syn-
chronous model. Figure B of each sub figure shows the corre-
sponding speed up ratio, usually the performance gain from asyn-
chronous model gradually decreases as the number of the worker
nodes increases, which implies the network traffic is growing. Fig-
ure C of each sub figure shows how partitioning speed change with
increasing concurrency: {20, ..., 30,...,50, ..., 100}, there are
3 different cases which stand for different worker total {2, 4, 6} re-
spectively. We can see that, when concurrency is relatively low, the
speed becomes higher with the concurrency increasing, and while
the concurrency reaches a certain degree, the speed increase di-
minishes. According to the analysis in Section 3.2, asynchronous
model benefits FENNEL by exploiting network utilization. In this
model, worker total decides vertex copies been sent over the net-
work. When networKk is not fully utilized, worker total or number
of vertex copies will not be an issue, but either worker total or con-
currency increases above a certain level, the network will then be
saturated, and thus cannot carry more vertex data in one RTT, low-
ering the network efficiency. As a result, the partitioning speed can
hardly increase when concurrency reaches 100, regardless of the
worker node total. In the case of 2 worker nodes, the improvement
is the most significant, which also means more worker nodes actu-
ally bring more network congestion in this system configuration,
rather than improving performance.

Figure D of each sub figure shows the impact on partition
edge cut ratio by concurrency {1, 2, 3, ..., 50, 100} and worker
(partition) total {2, 4, 6}.

When concurrency is set to 1, it stands for the original
synchronous model. Section 3.2 theoretically proves that, while
the vertices in graph stream arrive randomly, if the concurrency is
increased from 1 to 2, thus working asynchronously, the edge cut
ratio will be almost unaffected. The test result shows that, when
there are {2, 4, 6} workers (partitions), the edge cut ratio is almost
unaffected by concurrency.

It is worthy to note that synthetic graphs like graph500 and
real-world graphs like SOC-pokec have different properties, which
leads to differences between test results. graph500 dataset is gen-
erated by classical Kronecker generator, which is based on random
number sequence with permutation distribution parameters [43].
Since the sequence is purely random, it is very unlikely for con-
secutive vertices to be neighbours, and vertex degrees are random
too. The distribution of adjacent vertices is shown in Fig. 5, which
is uniformly distributed. Besides, the edge-vertex ratio is n = 48
in graph500 dataset, not too small for vertex data transferring over
generic network, so this actually helps network utilization.

SOC-pokec dataset is gathered from a real-world social net-
work, an important feature for social networks is called prefer-
ential attachment, that the user joined earlier usually owns more

38 Z. Shi et al. / Future Generation Computer Systems 71 (2017) 32-42

A /I synchronous model B
[asynchronous mode! B improve Ratio
30
= 2
£ 2 4
3 F
& 8
@ g
104
od
2 4 6 5
Worker Number Worker Number
60 &
c ——2workers] D

|—e— 4 workers 55
|—a— 6 workers 50| =2 workers
|—e— 4 workers

e |-=— 6 workers

L e]

" 2] oo o o oo oo

204 27
/“/._“‘\ . 15] AAd A A4 4 4

10

104 e

speed (k/s)
8
Edge Cut Rate (%)

1 20 30 40 s 6 70 8 9 100 110 1 20 3 4 5 6 70 8 9 100 110

Concurrency Concurrency

(e) patentcite.

A I synchronous model
B asynchronous model

Speed (Ks)

Speed (k/s)

A I sychronous model B,
|22 aysnchronous model improve Ratio
o 12
0
- g
2]
=z 2 T g
H ¢
g
o E 6
10 4
2
0 0
2 4 5 s 2 4 3 8
Worker Number Worker Number
c ® D ®
5 [Fa—2 workers
Fe—2workers |-e— 4 workers
s |-e—4 workers ° |—=— 6 workers
|-4—6 workers 45
@ T 5 35
g 4
= 5%
3 o S - .
=3 - oo & F\/’\o\./': —,
w20
2
A A4 a s A a aa
.
: /—-‘ °
5
10 20 30 4 5 6 70 8 % 10 1o 10 20 3 4 s 6 70 8 % 100 10

Concurrency Concurrency

(f) hudong-internallink.

0 20 3 4 5 6 70 8 9 100

Concurrency

(g) SOC-pokec.

B [Improve Ratio
5
4
2
23
2
]
g
E
2
1
0
2 4 6 B
Worker Number
D
w0 —=—2workers
|—o— 4 workers
6 workers
£ w0
S
3
&
3
3 A%, . ——
)
2
i
-
104
2) & & 100

Concurrency

Fig. 4. (continued)

neighbours than users joined later. Fig. 6 shows the average adja-
cent vertices of SOC-pokec data, the size of sliding window is 100.
As the window sliding from left to right, simulating the stream,
the average number of neighbours decreases continuously. So, un-
like the graph500 dataset, vertices with higher degree will gather
around the beginning of the graph stream, and vertices with lower
degree will be left behind, creating an unbalanced data packet flow.
Apparently those smaller vertex data packets will decrease net-
work utilization, so when there are more workers, the speed up
ratio keeps steady.

Because the two datasets have different characteristics, so we
can see the improvements in two tests, including speed up and
edge cut ratio are different. In theory, the SOC-pokec should
have a higher speed up than graph500 because of its low value
n, but because the SOC-pokec data distribution is not balanced,
which makes the actual network utilization gradually declined
and eventually be slower than graph500. In addition, due to the
unbalanced feature of SOC-pokec data, which makes its improved
speed ratio in Fig. 4(g)-B not decreases like shown in Fig. 4(a)-B.

4.2. Tree-shaped map-reduce network test

According to Section 3.3, the proposed tree-shaped map-reduce
network is able to support more workers (partitions) at the same
concurrency setting and bandwidth limit, maximizing network

400 i

w

o

<3
1

Average Num of Neighbor

T T T 1
400000 600000 800000 1000000

Graph Data Sliding Window

T T
0 200000

Fig. 5. Average number of neighbours in graph500 dataset (sliding window size:
100).

utilization, but at the cost of increased round-trip time. According
to previous tests in Section 4.1, the partitioning speed becomes
the highest when the number of workers is 2, more workers (4, 6)
will actually lower the performance. In this part, we will evaluate
the tree-shaped map-reduce network in different configurations,

Z. Shi et al. / Future Generation Computer Systems 71 (2017) 32-42 39

80— .

Average Num of Neighbor

40

Average Num of Neighbor

20

T T 1
800000 1200000 1600000

Graph Data Sliding Window

T
0 400000
Fig. 6. Average number of neighbours in SOC-pokec dataset (sliding window size:

100).

1% layer 2 Jayer 3" Jayer

@ Proxy

Fig. 7. Binary-tree map-reduce network with 8 workers in 3 layers.

Worker

and investigate how to handle the performance problem caused
by more workers, with a correct-configured tree. This will be
demonstrated by testing a binary tree. Since previous results show
that, for 2 workers, a concurrency of 100 will push the speed to
upper limit, so in this tree, the concurrency N of the 1st layer will be
set to 100, a layer deeper means a higher RTT, N will be increased
by a step value to fill the child/leaf workers, the step value is set
to {0, 50, 100, 200} respectively. {2, 3, 4,5, 6, 7, 8} workers are
tested, to form a tree with 1-3 layers, we use graph500 datasets
and it is shown in Fig. 7.

We can see from Fig. 8, as for original star-shaped model with
N = 100, the partitioning time simply increase linearly with more
workers. In this case, a concurrency of 100 actually saturates the
network connection of proxy, additional workers will then suf-
fer from increased latency. When N = 50, step = 0, begin with
2 workers and an under-utilized network, the partitioning time
of tree network is slightly higher than previous case, and still in-
creases with worker total, but not as fast as original model, the tree
network surpasses original model when there are 4 workers. Then
for N = 100, step = 0, the tree network will begin with 2 work-
ers and a fully utilized network, while the worker total increasing,
the partitioning time still rises, but slowly, from 4 to 8 workers,
the change is pretty small. When N = 100, step = {50, 100, 200},
from 2 to 4 workers, partitioning time increases as the previous
case (N = 100, step = 0). Beyond that, when worker total is
{4, ..., 8}, partitioning time basically remain stable, and lower
than all above cases.

We use another three synthetic graph and two real-world graph
to test ours tree-shaped map-reduce network, from Fig. 9, the five
lines indicate that with the increasing of the workers, that is, the

—m— N=100,star mode
—e— N=50 ,Step=0 .
809 |—a— N=100,Step=0
—+— N=100,Step=50
1 |—e— N=100,Step=100 "
—*— N=100,Step=200 / o
— | |
@ 60 o
g -
£ — A
4 A g% \
x——g— :
[J * */* *
40 / -3
.
| #»
20 : : ; . ; . ; .
2 4 6 8

number of workers

Fig. 8. graph500 partitioning time using different networks (initial concurrency:
{50, 100}, step: {0, 50, 100, 200}, topology: {star, tree}).

—&— er20-8
—&— er20-16
—A— er20-24

1401 | —w— hudong-internallink
{ |—@— patentcite
120 4 —<&— soc-pokec
100
%]
o 80 4
£

2 3 4 5 6 7 8
number of workers

Fig. 9. Datasets partitioning time with concurrency of 100 and a step 0.

tree network is more deep, the graph partitioning speed is slower,
this show the same result with Fig. 8.

From the results, tree network can improve overall network uti-
lization, thus improving partitioning performance, especially when
more workers or partitions required, as analysed in Section 3.3.
The improvement is achieved by adjusting a few parameters, in-
cluding initial (1st layer) concurrency N and step, according to net-
work characteristics such as available bandwidth and latency etc.,
however, those factors could be complex. In general, leaf work-
ers have a higher RTT, while filling the leaf workers up with more
asynchronous vertex data, the efficiency can thus be improved. The
same to all different layers in this tree network, with a well-chosen
step. the well-chosen step is the concurrency difference between
two layer of the tree network.

4.3. Graph sorted in BFS order

In Section 3.2, partition quality (edge cut ratio) is proved to be
nearly unaffected by a concurrency of 2, on the premise of ran-
dom vertex arrival. In Section 4.1, the test results reveal that, even
higher concurrency is allowed, for not affecting partition qual-
ity, under the same premise. However, in some cases, the graph

40 Z. Shi et al. / Future Generation Computer Systems 71 (2017) 32-42

3000

2500

2000

1500

1000

Average Num of Neighbor

500

0 1 ! 1 N I N 1
0 200000 400000 600000 800000 1000000
Graph Data Sliding Window

Fig. 10. Average number of neighbours in BFS-sorted graph500 dataset (sliding
window size: 100).

stream may not arrive randomly. For example, some graphs are
pre-processed for a better storage layout, because sometimes an
increased locality can optimize the access to external storage, but
it may also bring negative effects to partition quality. In other
words, the probability of consecutively arrived vertices are neigh-
bours, could be the fundamental cause of affecting partition qual-
ity, the higher the probability goes the higher the edge cut ratio
becomes. Here, we will sort graph500 dataset in BFS sequence, to
build up locality in this dataset, and then use the {2, 4, 6} work-
ers with {1, 2, 3, ..., 50, 100} concurrency to repeat the tests on
AsyncFENNEL, try to find out the outcome.

Fig. 10 shows the average number of neighbours in BFS-
sorted graph500 dataset, the size of sliding window is 100.
Back to Fig. 5, the same statistic of original graph500 dataset is
uniformly distributed. But in BFS-sorted graph500 dataset, the
average number of neighbours is strongly polarized, vertices at the
beginning tend to have much more neighbours, and vertices by
the end have much fewer neighbours. The dataset shows a strong
locality after been sorted in BFS sequence. While inputting the
sorted graph as a data stream, it will begin with strongly related
vertices that most of them are neighbours, followed by a long
tail comprised of many low-degree vertices. Based on previous
analysis, the former part of the stream will impact partition quality,
and most edge cut will be contributed by this part, it will also bring
a heavy traffic to network, since the vertex degree is pretty high.
For similar reasons, the latter part of the stream will lower network
efficiency, and pose little change to edge cut.

Fig. 11 shows the impact on edge cut ratio while partitioning
BFS-sorted graph500 dataset. The edge cut ratio is significantly
higher than that in Fig. 4(g)-D, which is tested in the same
environment with the only exception that the input graph is not
sorted in BFS sequence. For 2 workers, edge cut ratio increases
from 2% to 57%. For 4 workers, edge cut ratio increases from 28%
to 77%. For 6 workers, edge cut ratio increases from 43% to 82%. In
addition, all 3 test cases (2, 4, 6 workers) show a sharp increase
when concurrency goes above 1. After that, when concurrency
N > 2, the edge cut ratios become steady, and much higher than
those in original graph500 tests. Apparently, for graph sorted in
BFS order, the vertex sequence of input graph stream becomes a
serious problem to asynchronous model. The fundamental cause
appears to be the strong locality, which brings a high probability of
consecutive neighbouring vertices, the unbalanced network traffic
is another negative effect.

80 T ry & & & & 4
1!
|
o\\"/ 60 \
] |
“a 4
95 ‘ —a— 2 clients
3 40| —e— 4 clients
g I 6 clients
kel
in]
20
0 r T r T T T T T T !
0 20 40 60 80 100

Asynchronous degree

Fig. 11. Impact on edge cut ratio while partitioning graph500 dataset that sorted
in BFS sequence.

5. Conclusions and future work

For partitioning and processing massive graphs, it is nature to
runin adistributed system. For handling dynamic graphs, or simply
partitioning with higher performance, streaming graph partition-
ing can be applied. But the combining of the two is not easy. In this
work, we take a closer look at the processing model of FENNEL, a
state-of-art streaming graph partitioning system. We first propose
the asynchronous model, prove the viability of doing so, based on
the performance gain and negligible quality loss. We then focus
on the derived problem of network I/O congestion, propose a tree-
shaped map-reduce network to mitigate the impact of using more
workers and maximize the throughput. We implement above two
improvements as AsyncFENNEL, use both synthetic and real-world
graphs to evaluate, verify both asynchronous model and tree net-
work under various circumstances.

Massive applications and datasets demand new processing
architectures, a tree shaped map-reduce network reveals some
potential on improving performance, but it is definitely not the
only way to serve our purpose, we plan to push our experiment
further to more real-world datasets and system topologies. In
addition, for graph data with strong locality, such as graphs sorted
in BFS order, we will also look into this case to improve its partition
quality.

Acknowledgements

This work is supported by the National High Technol-
ogy Research and Development Program (863 Program) No.
2015AA015301, No. 2013AA013203, No. 2015AA016701, NSFC No.
61173043, No. 61303046, No. 61472153, State Key Laboratory of
Computer Architecture, No. CARCH201505 and Wuhan Applied Ba-
sic Research Project (No. 2015010101010004). This work is also
supported by Key Laboratory of Information Storage System, Min-
istry of Education, China No. 81.

References

[1] W. Jiang, G. Wang,]. Wu, Generating trusted graphs for trust evaluation in
online social networks, Future Gener. Comput. Syst. 31 (2012) 48-58. http://
dx.doi.org/10.1016/j.future.2012.06.010.

[2] T.Hachaj, M.R. Ogiela, Clustering of trending topics in microblogging posts: A
graph-based approach, Future Gener. Comput. Syst. (2016). http://dx.doi.org/
10.1016/j.future.2016.04.009.

[3] L. Quick, P. Wilkinson, D. Hardcastle, Using pregel-like large scale graph
processing frameworks for social network analysis, in: Proceedings of the 2012
International Conference on Advances in Social Networks Analysis and Mining,
(ASONAM 2012), IEEE Computer Society, 2012, pp. 457-463.

http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.future.2016.04.009
http://dx.doi.org/10.1016/j.future.2016.04.009
http://dx.doi.org/10.1016/j.future.2016.04.009
http://dx.doi.org/10.1016/j.future.2016.04.009
http://dx.doi.org/10.1016/j.future.2016.04.009
http://dx.doi.org/10.1016/j.future.2016.04.009
http://dx.doi.org/10.1016/j.future.2016.04.009
http://dx.doi.org/10.1016/j.future.2016.04.009
http://dx.doi.org/10.1016/j.future.2016.04.009
http://dx.doi.org/10.1016/j.future.2016.04.009
http://dx.doi.org/10.1016/j.future.2016.04.009
http://refhub.elsevier.com/S0167-739X(17)30033-X/sbref3

Z. Shi et al. / Future Generation Computer Systems 71 (2017) 32-42 41

[4] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,].M. Hellerstein,
Distributed graphlab: a framework for machine learning and data mining in
the cloud, Proc. VLDB Endow. 5 (8) (2012) 716-727.

[5] F.C.Bernstein, T.F. Koetzle, G.J. Williams, E.F. Meyer, M.D. Brice,].R. Rodgers, O.
Kennard, T. Shimanouchi, M. Tasumi, The protein data bank, Eur. J. Biochem.
80 (2) (1977) 319-324.

[6] The size of the world wide web (the Internet), http://www.worldwidewebsize.
com/ (accessed 09.02.16).

[7] Facebook reports first quarter 2016 results and announces proposal for
new class of stock, https://investor.fb.com/investor-news/press-release-
details/2016/Facebook-Reports-First-Quarter-2016-Results-and-Announces-
Proposal-for-New-Class-of-Stock/default.aspx (accessed 27.04.16).

[8] The top 20 valuable facebook statistics updated may 2016, https://zephoria.
com/top-15-valuable-facebook-statistics/ (accessed 31.05.16).

[9] S. Fortunato, Community detection in graphs, Phys. Rep. 486 (3) (2009)
75-174. http://dx.doi.org/10.1016/j.physrep.2009.11.002.

[10] U. Kang, C.E. Tsourakakis, C. Faloutsos, PEGASUS: A peta-scale graph mining
system implementation and observations, in: 2009 Ninth IEEE International
Conference on Data Mining, pp. 229-238. http://dx.doi.org/10.1109/ICDM.
2009.14.

[11] M.N. Kolountzakis, G.L. Miller, R. Peng, C.E. Tsourakakis, Efficient triangle
counting in large graphs via degree-based vertex partitioning, Internet. Math.
8(1)(2012) 161-185. http://dx.doi.org/10.1080/15427951.2012.625260.

[12] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking:
Bringing order to the web.

[13] B.V. Cherkassky, A.V. Goldberg, T. Radzik, Shortest paths algorithms: Theory
and experimental evaluation, Math. Program. 73 (2) (1996) 129-174.
http://dx.doi.org/10.1007/BF02592101.

[14] U. Kang, C.E. Tsourakakis, A.P. Appel, C. Faloutsos,]. Leskovec, HADI: Mining
radii of large graphs, ACM Trans. Knowl. Discov. Data 5 (2) (2011) 8:1-8:24.
http://dx.doi.org/10.1145/1921632.1921634.

[15] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP-
complete problems, in: Proceedings of the Sixth Annual ACM Sym-
posium on Theory of Computing, STOC '74, ACM, 1974, pp. 47-63.
http://dx.doi.org/10.1145/800119.803884.

[16] K. Andreev, H. Rcke, Balanced graph partitioning, in: Proceedings of
the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA’04, ACM, New York, NY, USA, 2004, pp. 120-124.
http://dx.doi.org/10.1145/1007912.1007931.

[17] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large
clusters, Commun. ACM 51 (1) (2008) 107-113. http://dx.doi.org/10.1145/
1327452.1327492.

[18] G. Malewicz, M.H. Austern, AJ.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, G.
Czajkowski, Pregel: a system for large-scale graph processing, in: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data,
ACM, 2010, pp. 135-146. http://dx.doi.org/10.1145/1807167.1807184.

[19] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J. Hellerstein, GraphLab:
A new framework for parallel machine learning, in: The 26th Conference on
Uncertainty in Artificial Intelligence (UAI), Catalina Island, USA, 2010.

[20] A.Pothen, H. Simon, K. Liou, Partitioning sparse matrices with eigenvectors of
graphs, SIAM. J. Matrix Anal. & Appl. 11 (3) (1990) 430-452. http://dx.doi.org/
10.1137/0611030.

[21] A.Pothen, H.D.Simon, L. Wang, S.T. Barnard, Towards a fast implementation of
spectral nested dissection, in: Proceedings of the 1992 ACM/IEEE Conference
on Supercomputing, Supercomputing’92, IEEE Computer Society Press, 1992,
pp. 42-51.

[22] S.T.Barnard, H.D. Simon, Fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems, Concurrency: Pract. Exper.
6(2)(1994) 101-117. http://dx.doi.org/10.1002/cpe.4330060203.

[23] MJ. Berger, S.H. Bokhari, A partitioning strategy for nonuniform prob-
lems on multiprocessors, IEEE Trans. Comput. C-36 (5) (1987) 570-580.
http://dx.doi.org/10.1109/TC.1987.1676942.

[24] B. Nour-Omid, A. Raefsky, G. Lyzenga, Solving finite element equations on
concurrent computers.

[25] An efficient heuristic procedure for partitioning graphs - kernighan - 2013 -
bell system technical journal - wiley online library.

[26] C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving network
partitions, in: 19th Conference on Design Automation, 1982, pp. 175-181.
http://dx.doi.org/10.1109/DAC.1982.1585498.

[27] G.Karypis, V. Kumar, METIS unstructured graph partitioning and sparse matrix
ordering system, version 2.0.

[28] T. Verbelen, T. Stevens, F. De Turck, B. Dhoedt, Graph partition-
ing algorithms for optimizing software deployment in mobile cloud
computing, Future Gener. Comput. Syst. 29 (2) (2012) 451-459.
http://dx.doi.org/10.1016/j.future.2012.07.003.

[29] C. Gkantsidis, B. Radunovic, M. Vojnovic, FENNEL: Streaming Graph Partition-
ing for Massive Scale Graphs, Technical Report MSR-TR-2012-213, Microsoft
Research, Redmond, WA, 2012, p. 98052.

[30] I Stanton, Streaming balanced graph partitioning algorithms for random
graphs, in: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, 2014, pp. 1287-1301.

[31] C. Battaglino, P. Pienta, R. Vuduc, GraSP: distributed streaming graph
partitioning, in: HPGM: High Performance Graph Mining - 1st High
Performance Graph Mining workshop, Barcelona Supercomputing Center,
Sydney, 2015, http://dx.doi.org/10.5821/hpgm15.3.

[32] D. Margo, M. Seltzer, A scalable distributed graph partitioner, Proc. VLDB En-
dow. 8 (12)(2015) 1478-1489. http://dx.doi.org/10.14778/2824032.2824046.

[33] F.Bourse, M. Lelarge, M. Vojnovic, Balanced graph edge partition, in: Proceed-
ings of the 20th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, ACM, 2014, pp. 1456-1465.

[34] F.Rahimian, A.H. Payberah, S. Girdzijauskas, M. Jelasity, S. Haridi, A distributed
algorithm for large-scale graph partitioning, ACM Trans. Auton. Adapt. Syst. 10
(2)(2015) 1-24. http://dx.doi.org/10.1145/2714568.

[35] Y. Shao, B. Cui, L. Ma, Page: a partition aware engine for parallel graph
computation, IEEE Trans. Knowl. Data Eng. 27 (2) (2015) 518-530.

[36] J. Huang, DJ. Abadi, Leopard: lightweight edge-oriented partitioning and
replication for dynamic graphs, Proc. VLDB Endow. 9 (7) (2016) 540-551.
http://dx.doi.org/10.14778/2904483.2904486.

[37] C. Tsourakakis, C. Gkantsidis, B. Radunovic, M. Vojnovic, FENNEL: Streaming
graph partitioning for massive scale graphs, in: Proceedings of the 7th ACM
International Conference on Web Search and Data Mining, WSDM ’'14, ACM,
2014, pp. 333-342. http://dx.doi.org/10.1145/2556195.2556213.

[38] T. Kajdanowicz, P. Kazienko, W. Indyk, Parallel processing of large graphs,
Future Gener. Comput. Syst. 32 (2013) 324-337. http://dx.doi.org/10.1016/j.
future.2013.08.007.

[39] stanford snap, http://snap.stanford.edu/ (accessed 01.10.16).
[40] Konect datasets, http://konect.uni-koblenz.de/ (accessed 01.10.16).

[41] Us patents network dataset - KONECT (Oct. 2016). URL http://konect.uni-
koblenz.de/networks/patentcite.

[42] Hudong internal links network dataset - KONECT (Oct. 2016). URL http://
konect.uni-koblenz.de/networks/ zhishi-hudong-internallink.

[43] J.Leskovec, D. Chakrabarti,]. Kleinberg, C. Faloutsos, Z. Ghahramani, Kronecker
graphs: An approach to modeling networks,]. Mach. Learn. Res. 11 (2010)
985-1042.

Zhan Shi received his B.S. degree and Master degree
in Computer Science, and Ph.D. degree in Computer
Engineering from Huazhong University of Science and
Technology (HUST), China. He is working at the Huazhong
University of Science and Technology (HUST) in China, and
is an Associate Researcher in Wuhan National Laboratory
for Optoelectronics. His research interests include graph
processing, distributed storage system and cloud storage.

Junhao Li, born in 1991, M.S. candidate. His research
interest is cloud storage and graph computing.

Pengfei Guo, born in 1989, he received M.S. degree in
2015. His research interest is graph computing.

Shuangshuang Li, born in 1992, M.S. candidate. Her
research interest is graph computing.

http://refhub.elsevier.com/S0167-739X(17)30033-X/sbref4
http://refhub.elsevier.com/S0167-739X(17)30033-X/sbref5
http://www.worldwidewebsize.com/
http://www.worldwidewebsize.com/
http://www.worldwidewebsize.com/
http://www.worldwidewebsize.com/
https://investor.fb.com/investor-news/press-release-details/2016/Facebook-Reports-First-Quarter-2016-Results-and-Announces-Proposal-for-New-Class-of-Stock/default.aspx
https://investor.fb.com/investor-news/press-release-details/2016/Facebook-Reports-First-Quarter-2016-Results-and-Announces-Proposal-for-New-Class-of-Stock/default.aspx
https://investor.fb.com/investor-news/press-release-details/2016/Facebook-Reports-First-Quarter-2016-Results-and-Announces-Proposal-for-New-Class-of-Stock/default.aspx
https://investor.fb.com/investor-news/press-release-details/2016/Facebook-Reports-First-Quarter-2016-Results-and-Announces-Proposal-for-New-Class-of-Stock/default.aspx
https://investor.fb.com/investor-news/press-release-details/2016/Facebook-Reports-First-Quarter-2016-Results-and-Announces-Proposal-for-New-Class-of-Stock/default.aspx
https://zephoria.com/top-15-valuable-facebook-statistics/
https://zephoria.com/top-15-valuable-facebook-statistics/
https://zephoria.com/top-15-valuable-facebook-statistics/
https://zephoria.com/top-15-valuable-facebook-statistics/
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1080/15427951.2012.625260
http://dx.doi.org/10.1007/BF02592101
http://dx.doi.org/10.1145/1921632.1921634
http://dx.doi.org/10.1145/800119.803884
http://dx.doi.org/10.1145/1007912.1007931
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1807167.1807184
http://refhub.elsevier.com/S0167-739X(17)30033-X/sbref19
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://refhub.elsevier.com/S0167-739X(17)30033-X/sbref21
http://dx.doi.org/10.1002/cpe.4330060203
http://dx.doi.org/10.1109/TC.1987.1676942
http://dx.doi.org/10.1109/DAC.1982.1585498
http://dx.doi.org/10.1016/j.future.2012.07.003
http://refhub.elsevier.com/S0167-739X(17)30033-X/sbref29
http://refhub.elsevier.com/S0167-739X(17)30033-X/sbref30
http://dx.doi.org/10.5821/hpgm15.3
http://dx.doi.org/10.14778/2824032.2824046
http://refhub.elsevier.com/S0167-739X(17)30033-X/sbref33
http://dx.doi.org/10.1145/2714568
http://refhub.elsevier.com/S0167-739X(17)30033-X/sbref35
http://dx.doi.org/10.14778/2904483.2904486
http://dx.doi.org/10.1145/2556195.2556213
http://dx.doi.org/10.1016/j.future.2013.08.007
http://dx.doi.org/10.1016/j.future.2013.08.007
http://dx.doi.org/10.1016/j.future.2013.08.007
http://dx.doi.org/10.1016/j.future.2013.08.007
http://dx.doi.org/10.1016/j.future.2013.08.007
http://dx.doi.org/10.1016/j.future.2013.08.007
http://dx.doi.org/10.1016/j.future.2013.08.007
http://dx.doi.org/10.1016/j.future.2013.08.007
http://dx.doi.org/10.1016/j.future.2013.08.007
http://dx.doi.org/10.1016/j.future.2013.08.007
http://dx.doi.org/10.1016/j.future.2013.08.007
http://snap.stanford.edu/
http://konect.uni-koblenz.de/
http://konect.uni-koblenz.de/networks/patentcite
http://konect.uni-koblenz.de/networks/patentcite
http://konect.uni-koblenz.de/networks/patentcite
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
http://refhub.elsevier.com/S0167-739X(17)30033-X/sbref43

42 Z. Shi et al. / Future Generation Computer Systems 71 (2017) 32-42

Dan Fengreceived the B.E., M.E., and Ph.D. degrees in Com-
puter Science and Technology in 1991, 1994, and 1997, re-
spectively, from Huazhong University of Science and Tech-
nology (HUST), China. She is a professor and the dean of the
School of Computer Science and Technology, HUST. Her
research interests include computer architecture, massive
storage systems, and parallel file systems. She has more
than 100 publications in major journals and international
conferences, including IEEETC, IEEETPDS, ACM-TOS, FAST,
/ USENIX ATC, ICDCS, HPDC, SC, ICS, IPDPS, and ICPP. She

8 has served as the program committees of multiple interna-
tional conferences, including SC 2011, 2013 and MSST 2012, 2015. She is a member
of IEEE and a member of ACM.

Yi Su, received the B.S. degree in Computer Science
from the Huazhong University of Science and Technology
(HUST), China, in 2012. He is currently a Ph.D. candidate
of the Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology. His
research interests include big data processing systems,
cloud storage systems.

	Partitioning dynamic graph asynchronously with distributed FENNEL
	Introduction
	Related work
	Distributed partitioning
	Processing model of FENNEL
	Asynchronous model
	Tree-shaped map-reduce network

	Evaluation
	Asynchronous model test
	Tree-shaped map-reduce network test
	Graph sorted in BFS order

	Conclusions and future work
	Acknowledgements
	References

